<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class=""><div class="" style="margin: 0px; font-stretch: normal; line-height: normal;">You are cordially invited to the Mathematics Colloquium at <b class="">11:40</b> in the <b class="">FENS building</b> on Sabancı Campus<b class=""> </b>in room <b class="">2019 </b>on <b class="">Thursday 8 November 2018</b>.<div class=""></div></div><div class="" style="margin: 0px; font-stretch: normal; line-height: normal;"><br class=""></div><div class="" style="margin: 0px; font-stretch: normal; line-height: normal;"><b class="">Alexander Berkovich</b></div><br class="">Title: <b class="">On some elementary polynomial identities Involving q-trinomial coefficients</b><br class=""><div class="" style="margin: 0px; font-stretch: normal; line-height: normal;"><br class=""></div><div class="" style="margin: 0px; font-stretch: normal; line-height: normal;">Abstract : I will show how to use q- binomial theorem<br class="">in order to prove some simple polynomial identities involving q-trinomial<br class="">coefficients. Using Trinomial Analogue of Bailey Lemma on these identities<br class="">yields the Capparelli partition theorems. I conclude with a display of new<br class="">infinite hierarchy of multisum = product identities involving bases<br class="">q,q^2,q^6 . This talk is based on my recent joint work with Ali K. Uncu.<br class=""></div><div class=""><br class=""></div><div class=""><br class=""></div><div class=""><br class=""></div><div class="">Kind regards,</div><div class="">Michel Lavrauw.</div></body></html>