LOWER BOUND ESTIMATES FOR THE EIGENVALUES OF FIRST-ORDER NONLINEAR HAMILTONIAN SYSTEMS

AĞACIK ZAFER

ABSTRACT. In this talk, we consider several eigenvalue problems associated with the generalized planar Hamiltonian systems on time scale

$$x^{\Delta} = \alpha(t)x^{\sigma} + \eta \beta(t)\phi_{p}(u),$$

$$u^{\Delta} = -\lambda \gamma(t)\phi_{q}(x^{\sigma}) - \alpha(t)u, \quad t \in [a, b]_{\mathbb{T}},$$
(0.1)

where \mathbb{T} is a general time scale and $[a, b]_{\mathbb{T}} := [a, b] \cap \mathbb{T}, \eta, \lambda$ are eigenvalue parameters, and

$$\phi_r(v) = |v|^{r-2}v, \quad r > 1$$

is the r-Laplacian.

Lower bound estimates for the eigenvalues are established by way of the Lyapunov inequality method. Our results are interpreted to nonlinear differential and difference planar Hamiltonian boundary value problems.

A. ZAFER

DEPARTMENT OF MATHEMATICS AND STATISTICS, COLLEGE OF ENGINEERING AND TECHNOLOGY, AMERICAN UNIVERSITY OF THE MIDDLE EAST, KUWAIT

 $E\text{-}mail\ address: \texttt{agacik.zafer@aum.edu.kw}$

²⁰¹⁰ Mathematics Subject Classification. 34N05, 34L15, 34B09.

Key words and phrases. Time Scales; Hamiltonian system; Eigenvalue; Lyapunov inequality; Boundary value problem.