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Nurcan ARGAÇ (Ege University)
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Welcome to Algebra and Number Theory Symposium in Honour of Prof. Dr.
Mehpare Bilhan. The symposium is dedicated to Prof. Bilhan because of her
retirement in October 2010. We wish her a happy retirement and a fruitful
life in the future. She has given to almost all of us some algebra course during
our studies at Middle East Technical University. Prof. Bilhan is not only our
teacher but also a close friend and sometimes our mother. She is interested in
our problems not only in mathematics but also in daily life problems.

We are grateful to all the participants and speakers of this symposium in
particular to the ones who come from long distances, Iran and Russia. We
understand and appreciate their support to the symposium.

We would like to thank Middle East Technical University Mathematics De-
partment and Scientific and Research Council of Turkey (TÜBİTAK) for all
the support they have given. We hope you have a good time during the sym-
posium.

Organizing Committee
13 October 2010
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Mehpare Gökalp [Bilhan] was born in 1943 in Vize, Kırklareli, in Turkish
Thrace. For high school, she went to Istanbul, where she graduated from
Kandilli Kız Lisesi. She then went to Paris on a grant from the Turkish state
to study mathematics. She earned her B.Sc. and Ph.D. degrees from Université
Paris VI, Pierre-et-Marie-Curie. During those years, Paris was a very lively
place to do mathematics. Mehpare Gökalp [Bilhan] took courses from many
famous mathematicians, such as Claude Chevalley, Henri Cartan and Pierre
Samuel; she also attended some seminars of Jean-Pierre Serre. She wrote her
Ph.D. thesis, which was an analytic study of the L-series associated with Hecke
characters, under the direction of Roger Descombes. She also met her future
husband Saffet Bilhan, who was doing Ph.D. in the Law School in Paris. While
they were still students in Paris, they married and had two boys, Haydar and
Ömer.

Mehpare Bilhan returned to Turkey in 1974 and started working in Hacettepe
University. In those years, at Middle East Technical University, the algebra
group was very active, thanks to people like Cahit Arf, Gündüz Ikeda, Cemal
Koç and others. She quickly joined the group, and they had very fruitful
seminars and established long-term friendships. She prepared her habilitation
on density theorems in global fields in 1978. In 1980, with the encouragement of
Cahit Arf and Gündüz Ikeda, Mehpare Bilhan came to Middle East Technical
University, where she has been based ever since. In those years, she improved
her habilitation work on global fields and obtained new results. In the following
years, she also worked on class field theory, class number problems, arithmetic
progressions of polynomials over finite fields, and Tchebotarev sets.

Professor Bilhan made academic visits to various institutions, in Italy, France,
and Egypt. Between 1997 and 2003, she worked for the Feza Gürsey Institute
in Istanbul as a part-time researcher. She has published a number of research
articles in algebraic number theory and related fields, in national and inter-
national journals. She has a textbook in abstract algebra, written with two
co-authors. She has given many talks in conferences abroad and in Turkey,
and taught courses at international summer schools, graduate summer schools
of TÜBİTAK, and also school teachers’ training programs.

Among generations of METU Mathematics Department students, Mehpare
Bilhan is well known for her wonderful teaching. She has taught a variety of
undergraduate and graduate courses at METU. Almost every METU Math
Department alumnus took a number theory or algebra course from her; many
took several courses. She has supervised four Ph.D. and nine M.Sc. theses.
Currently she is directing one Ph.D. thesis.

She is the grandmother of four: Defne, Demir, Kerim, and Zeynep.
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Program

October 13, 2010 (Wednesday)

09:00-09:50 Henning Stichtenoth
On the number of rational points on algebraic
curves over finite fields

10:00-10:50 Cem Güneri Rational Points on Curves over Finite Fields

Coffee Break

11:20-11:50 İlhan İkeda On Eisenstein series
11:50-12:20 Mahmut Kuzucuoǧlu Universal Groups

LUNCH

14:00-14:50 Ersan Akyıldız
Generalized Kostant-Macdonald identity and
a
smoothness condition for Schubert varieties
in G/B

15:00-15:50 Ayşe Berkman Group Actions in the Finite Morley Rank
Context

Coffee Break

16:20-16:50 Ekin Özman
Points on Quadratic Twists of the Classical
Modular Curve

16:50-17:20 Kıvanç Ersoy Locally Finite Groups with Anticentral Ele-
ments

17:20-17:40 Hakan Özadam
The Hamming distance of cyclic codes of
length ps over GR(p2,m)

17:40-18:00 Ayberk Zeytin Hermitian Lattices and Algebraic Curves

Cocktail
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October 14, 2010 (Thursday)

09:00-09:50 Mohammad Shahryari Character Degrees of Polyadic Groups

10:00-10:50 Emrah Çakcak
Fourier coefficients of power permutations in
characteristic two and relative cohomology of
certain families of curves

Coffee Break

11:20-11:50 Hatice Kandamar Gamma Rings
11:50-12:20 Feride Kuzucuoǧlu On Strongly Prime Right Ideals

LUNCH

14:00-14:50 Cem Yalçın Yıldırım Small gaps between primes and almost
primes

15:00-15:50 Ali Ulaş Özgür Kişisel Products generalizing the factorial

Coffee Break

16:00-17:00 Anılar
Mehpare hocamız ile ilgili anılarınızı
paylaşırsanız
seviniriz.

Conference Dinner at Eymir Lake

October 15, 2010 (Friday)

09:00-09:50 Vladimir M. Levchuk
The normal structure and extremal subgroups
in the unipotent subgroup of the Lie type
groups

10:00-10:50 Alev Topuzoǧlu On permutations of finite fields

Coffee Break

11:20-11:50 Sefa Feza Arslan New families supporting Rossi’s conjecture

11:50-12:20 Kamal Aziziheris
Bounding the derived length for a given set
of
character degrees

LUNCH

14:00-14:50 Sinan Sertöz Counting Lines on Algebraic Surfaces

15:00-15:50 Ferruh Özbudak
Quadratic forms in even characteristic and
maximal/minimal curves over finite fields

Coffee Break

16:20-16:50 Erol Serbest
Ramification Theory in Non-Abelian Local
Class
Field Theory

16:50-17:10 Cem Tezer Characterisation of R/ 2 πZ by means of a
linear order

17:20-17:40 Sevgi Harman Radically Perfect Ideals in Commutative
Rings

17:40-18:00 Tamer Koşan On Modules over Group Rings

18:00-18:20 Ömer Küçüksakallı Class number one problem
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Invited Speakers

Generalized Kostant-Macdonald identity
and a smoothness condition for Schubert varieties in

G/B

Ersan AKYILDIZ - James B. CARRELL

By a B-regular variety, we mean a smooth projective variety over C admitting an algebraic
action of the upper triangular Borel subgroup B ⊂ SL2(C) such that the unipotent radical
in B has a unique fixed point. The purpose of this note is to give a refinement of the
generalized Kostant-Macdonald identity proved in [ Proc.Nat.Acad.Sci.USA, 1989] for the
Poincaré polynomial of a B-regular variety. When interpreted for a smooth Schubert variety
X in the flag variety G/B of an algebraic group G over C, this yields an amusing identity for
the size of the Bruhat interval in the Weyl group of G corresponding to X, which gives a new
elementary necessary condition for a Schubert variety in G/B to be smooth.

Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey

email: ersan@metu.edu.tr

Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada

email: carrell@math.ubc.ca

New families supporting Rossi’s conjecture

Sefa Feza ARSLAN

Rossi’s conjecture saying that every Gorenstein local ring has non-decreasing Hilbert function
is not solved even for monomial curves. In [1], we show that the Hilbert function is non-
decreasing for local Gorenstein rings with embedding dimension four associated to monomial
curves, under some arithmetic assumptions on the generators of their defining ideals in the
non-complete intersection case. In [2], by using the technique of nice gluing, we give infinitely
many families of 1-dimensional local rings associated to complete intersection monomial curves
with non-decreasing Hilbert functions. In this talk, by using not nice gluing, we give families
of 1-dimensional local rings associated to complete intersection monomial curves given with
free parameters supporting Rossi’s conjecture [3]. This is a joint work with Nil Şahin and
Neslihan Ös Sipahi.

References

[1] F. Arslan, P. Mete, Hilbert functions of Gorenstein monomial curves, Proc. Amer. Math. Soc.
135 (2007) 1993-2002.
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[2] F. Arslan, P. Mete, M. Şahin, Gluing and Hilbert functions of monomial curves, Proc. Amer.
Math. Soc. 137 (2009) 2225-2232.

[3] F. Arslan, N. Şahin, N. Ös Sipahi, Monomial curves obtained by not nice gluing, Preprint

Mimar Sinan Güzel Sanatlar Üniversitesi, Matematik Bölümü

email: feza.arslan@msgsu.edu.tr.

Bounding the derived length for a given set of character
degrees

Kamal AZIZIHERIS

Let G be a finite solvable group with {1, a, b, c, ab, ac} as the character degree set, where a, b,
and c are pairwise coprime integers greater than 1. We show that the derived length of G is at
most 4. This verifies that the Taketa inequality, dl(G) ≤ |cd(G)|, is valid for solvable groups
with {1, a, b, c, ab, ac} as the character degree set. Also, as a corollary, we conclude that if a,
b, c, and d are pairwise coprime integers greater than 1 and G is a solvable group such that
cd(G) = {1, a, b, c, d, ac, ad, bc, bd}, then dl(G) ≤ 5. Finally, we construct a family of solvable
groups whose derived lengths are 4 and character degree sets are in the form {1, p, b, pb, qp, pqp},
where p is a prime, q is a prime power of an odd prime, and b > 1 is integer such that p, q,
and b are pairwise coprime. Hence, the bound 4 is the best bound for the derived length of
solvable groups whose character degree set is in the form {1, a, b, c, ab, ac} for some pairwise
coprime integers a, b, and c.

Department of Mathematical Sciences, Kent State University Kent, Ohio 44242, USA

and

Department of Mathematical Sciences, University of Tabriz

Tabriz, IRAN

email: kazizihe@math.kent.edu

Group Actions in the Finite Morley Rank Context

Ayşe BERKMAN

All groups are assumed to be infinite, and of finite Morley rank, and all actions are assumed
to be definable. In my talk, I shall focus on groups acting on abelian groups. The following
classical result in this setting was proven by Boris Zilber.

Theorem. (Zilber) Let G be connected group with an infinite center, acting faithfully and
minimally on a connected abelian group V . Then V is a vector space over an algebraically
closed field, and G is a subgroup of GL(V ) in its natural action on V .

Alexandre Borovik and Gregory Cherlin asked the following.
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Question. (Borovik – Cherlin) Let G be a connected group acting irreducibly, faithfully, and
with pseudoreflection subgroups on a connected abelian group V . Then is V a vector space,
and is G isomorphic to GL(V ) in its natural action?

In my talk, I shall present a possible approach to this question, and give an affirmative answer
for the case where the pseudorank of G is equal to the Morley rank of V .

Mathematics Department
Middle East Technical University
Ankara 06531

email: aberkman@metu.edu.tr

web: http://www.metu.edu.tr/~aberkman

Fourier coefficients of power permutations in
characteristic two and relative cohomology of certain

families of curves

Emrah ÇAKÇAK

This is an ongoing joint work with Philippe Langevin. We consider a certain family of Artin-
Schreier curves related to Fourier coefficients of power permutations on a finite field of charac-
teristic two. Here, using p-adic cohomology and deformation techniques, intoduced by several
authors, we determine the Picard-Fuchs equation satisfied by the Frobenius endomorphism
acting on the relative Monsky-Washnitzer cohomology of these curves.

Mimar Sinan Fine Arts University

email: emrah.cakcak@msgsu.edu.tr

Rational Points on Curves over Finite Fields

Cem GÜNERİ

Let X be an algebraic curve of genus g defined over the finite field Fq with q elements. The
number Nq(X) of Fq-rational points on X is bounded by the celebrated Hasse-Weil theorem:

Nq(X) ≤ q + 1 + 2g
√
q.

We plan to talk about the number of rational points of curves over finite fields and, if time
permits, their applications in coding theory. Special emphasis will be on curves reaching the
Hasse-Weil bound, the so-called maximal curves.

Sabancı University, FENS, 34956 İstanbul, Turkey

email: guneri@sabanciuniv.edu
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On Eisenstein series

Kazım İlhan İKEDA

To my teacher Mehpare Bilhan

Introduction In the theory of elliptic modular forms, there are two ways to construct Eisen-
stein series. The first way is to define Eisenstein series EL(z, s;N) via a “lattice” L, where for
simplicity we assume for the time being that L = Z× Z, and a certain “congruence relation”
imposed on the lattice L defined modulo N for some 0 < N ∈ Z, where again for simplicity
we let N = 1, as follows. For z ∈ H1 = {z ∈ C : im(z) > 0} the Poincaré upper-half plane
and for s ∈ C with Re(s) > 1, define

EL(z, s) =
1

2

∑
(0,0)6=(m,n)∈L

δ(z)sJ2s[(m,n), z]−1, (∗)

where J2s[(m,n), z] :=| mz + n |2s for (0, 0) 6= (m,n) ∈ L, z ∈ H1, and δ(z) = im(z) for
z ∈ H1. The second way to define Eisenstein series EP (z, s; Γ) is with respect to a “parabolic

subgroup” P of G = SL2(Q), where for simplicity, we assume that P =

{(
∗ ∗
0 ∗

)
∈ G

}
, and

a certain “congruence subgroup” Γ of level N in SL2(Z) for some 0 < N ∈ Z, where again for
simplicity, we choose N = 1 which means Γ to be the full modular group SL2(Z), as follows.
For z ∈ H1 and for s ∈ C with Re(s) > 1, define the sum by

EP (z, s) =
∑

α∈(Γ∩P )\Γ

im(α.z)s, (†)

where the action (α, z) 7→ α.z of α =

(
aα bα
cα dα

)
∈ Γ on z ∈ H1 is defined as usual by

α.z = aαz+bα
cαz+dα

∈ H1. The imaginary part im(α.z) of α.z ∈ H1, for α ∈ Γ and z ∈ H1, is

im(α.z) = δ(z)
|cαz+dα|2 . The Eisenstein series defined by (†) is well-defined. In fact, let α ∈ Γ and

p ∈ P ∩ Γ, let z ∈ H1. Now,

(pα).z = p(α.z) = ±(±α.z + bp) = α.z ± bp.

Thus, im((pα).z) = im(α.z). We can rewrite the Eisenstein series (†), for z ∈ H1 and s ∈ C
with Re(s) > 1, as

EP (z, s) =
∑

α∈Γ∞\Γ

δ(z)sJ2s(α, z)−1, (‡)

where J2s : G×H1 → C is a C-valued factor of automorphy defined by J2s(α, z) =| cαz+dα |2s
for α ∈ G and z ∈ H1. Here, Γ∞ is defined as usual by Γ∞ = P ∩Γ. Note that, by the cocycle
relation satisfied by the factor of automorphy J2s : G × H1 → C, for p ∈ Γ∞, α ∈ Γ and
z ∈ H1, J2s(pα, z) = J2s(p, α.z)J2s(α, z) = J2s(α, z). Thus, J2s : G × H1 → C induces a
well-defined C-valued function on Γ∞\Γ × H1. Both of the series (∗) and (†) or (‡) are well-
defined and converge absolutely and uniformly defining functions which are holomorphic in s
and real-analytic and Γ-invariant with respect to z.

Among these two types of Eisenstein series, the first type, namely the function EL(z, s) has
better analytic properties than the second type function EP (z, s). In fact, following [Zag], we
state the following theorem without giving a proof.
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Theorem 1. The Eisenstein series EL(z, s) can be continued meromorphically to the whole
complex s-plane, which is holomorphic except for simple poles at s = 0 and s = 1 with residues
−1

2
and 1

2
respectively, and satisfies the following functional equation

E∗L(z, s) = E∗L(z, 1− s), (§)

where
E∗L(z, s) = π−sΓ(s)EL(z, s), (¶)

which is called the completed Eisenstein series.

On the other hand, for Langlands functoriality, in particular to study Langlands L-functions
via Rankin-Selberg or Langlands-Shahidi methods, the second type Eisenstein series EP (z, s)
is much more suitable than EL(z, s). For example, again following [Zag], the Rankin zeta-
function Rfj(s) defined for a Maass eigenform fj(z) by

Rfj(s) =
Γ(s/2)2

8πsΓ(s)
Γ
(s

2
+ irj

)
Γ
(s

2
− irj

) ∞∑
n=−∞
n 6=0

| aj(n) |2

| n |s

for s ∈ C with Re(s) > 1, can be obtained by integrating the specific function | fj(z) |2,
where fj(z) is the Maass eigenform, against the Eisenstein series EP (z, s). Recall that, for
any complex-valued continuous Γ-invariant function f : H1 → C on the upper-half plane H1

has a Fourier expansion of the form f(z) =
∑∞

n=−∞ an(f ; y)e2πinx, where z = x + iy ∈ H1

with x = Re(z) and y = im(z). As usual, let L2(Γ\H1) be the Hilbert space of complex-
valued square-integrable Γ-invariant functions, and let L2

0(Γ\H1) be the subspace of functions

f : H1 → C with an(f ; y) = 0. Let ∆ = y2
(
∂2

∂x2 + ∂2

∂y2

)
be the Laplace operator on L2(Γ\H1).

The subspace L0(Γ\H1) is stable under the oparator ∆, and has a basis {fj}1≤j∈Z consisting
of eigenforms of ∆ satisfying ∆fj = −

(
1
4

+ r2
j

)
fj, where rj ∈ C and 1

4
+ r2

j ≥ 0, for each
j = 1, 2, · · · . Thus, the nth Fourier coefficient an(fj; y) satisfies the second-order differential
equation

y2 d
2

dy2
an(fj; y)− 4π2n2y2an(fj; y) = −

(
1

4
+ r2

j

)
an(fj; y).

It follows that an(fj; y) =
√
yKirj(2π | n | y) is the unique solution of this differential equation,

which remains bounded as y → ∞, where for ν ∈ C, the K-Bessel function Kν(z) is defined
by

Kν(z) =

∫ ∞
0

ez cosh(t) cosh(ν)tdt,

for z ∈ C with Re(z) > 0.

In fact, for any complex-valued Γ-invariant function f : Γ\H1 → C on the upper-half plane
H1 which is of sufficiently rapid decay, for example f(z) = O(y−ε) as y →∞ for some ε > 0,
the scalar product

〈f | EP (., s)〉 :=

∫
Γ\H1

f(z)EP (z, s)dz

converges absolutely for some s satisfying Re(s) > 1. For such s, the scalar product
〈f | EP (., s)〉 has an integral representation as

〈f | EP (., s)〉 =

∫ ∞
0

A0(f ; y)ys−2dy,

9



where the term A0(f ; y) is defined by the Fourier expansion of the function f : H1 → C of the
form

f(z) =
∞∑

n=−∞

An(f ; y)e2πinx,

where z = x+ iy ∈ H1, as f : H1 → C is a continuous and Γ-invariant function. In particular,
choosing f(z) =| fj(z) |2, where fj(z) is a Maass eigenform, the constant term of f(z) is

A0(f ; y) = y
∑
n6=0

| aj(n) |2 Kirj(2π | n | y)2,

where aj(n) ∈ C, rj ∈ R with rj ∈ R, and Kirj(2π | n | y) is real, where for ν ∈ C, the
K-Bessel function is defined by

Kν(z) =

∫ ∞
0

ez cosh(t) cosh(ν)tdt,

for z ∈ C with Re(z) > 0. Thus, the scalar product 〈f | EP (., s)〉 is

〈f | EP (., s)〉 =

∫
Γ\H1

| fi(z) |2 EP (z, s)dz

=

∫ ∞
0

ys−1
∑
n6=0

| aj(n) |2 Kirj(2π | n | y)2dy

=
∑
n6=0

| aj(n) |2

| n |s

∫ ∞
0

ys−1Kirj(2πy)2dy

= Rfj(s),

which is the Rankin zeta-function.

The Eisenstein series EL(z, s) and EP (z, s) are related with each other; that is, linearly equiv-
alent, by the following simple equality.

ζQ(2s)EP (z, s) = EL(z, s). (‖)

In fact, there exists a bijection

Γ∞\Γ→ {±(c, d) : gcd(c, d) = 1}

defined by

Γ∞

(
a b
c d

)
7→ ±(c, d)

10



for every

(
a b
c d

)
∈ Γ. Thus, for z ∈ H1 and s ∈ C with Re(z) > 1,

ζQ(2s)EP (z, s) =
∞∑
n=1

1

n2s

∑
α∈Γ∞\Γ

δ(z)sJ2s(α, z)−1

=
∞∑
n=1

1

n2s

∑
α∈Γ∞\Γ

δ(z)s | cαz + dα |−2s

=
1

2

∞∑
n=1

1

n2s

∑
(c,d)∈L

gcd(c,d)=1

δ(z)s | cz + d |−2s

=
1

2

∞∑
n=1

∑
(c,d)∈L

gcd(c,d)=1

δ(z)s(n | cz + d |)−2s

=
1

2

∑
(0,0)6=(m,n)∈L

δ(z)s | mz + n |−2s

= EL(z, s).

However, we should note that, in the adèlic setting the linear equivalence between the adèlic
versions of Eisenstein series EL(z, s) and EP (z, s) is not that simple and straightforward as (‖)
and its proof. In fact, following closely [JacZag], [GelJac] and [JacLan], let G = GL(2), Z =

the center of G, A =

{(
a 0
0 d

)
∈ G

}
, N =

{(
1 ∗
0 1

)
∈ G

}
, and P = AN =

{(
a ∗
0 d

)
∈ G

}
.

For a number field F , let FA = A be the adèle ring of F , and denote GF , Gν and GA for
the groups G(F ), G(Fν) and G(A) respectively, and let C =

∏
ν Cν be the standard maximal

compact subgroup of GA. For any two Hecke characters χ1 and χ2 of F (which are trivial on
the component R×>0) and for any s ∈ C, GA acts on the space H(χ1, χ2, s) consisting of all
functions f : GA → C satisfying

– f

((
a x
0 d

)
g

)
= χ1(a)χ2(d) | a

d
|s f(g), for every a, d ∈ A×, x ∈ A, and g ∈ GA;

–
∫
C
| f(κ) |2 dκ <∞,

by the right translation, thereby defines a representation πχ1,χ2,s of GA on H(χ1, χ2, s).

The linear equivalence between E(g, s; f) and E(g, s; Φ, χ1, χ2) is then stated by the following
theorem, whose proof we refer the reader to Section 1.1 of [JacZag].

Theorem 2 (Jacquet-Zagier). If f ∈ H(χ1, χ2) is K-finite, then

E(g, s; f) = L(2s, χ1χ2)−1
∑
i

Pi(s)E(g, s; Φi, χ1, χ2),

where Φi ∈ So(A2) and each Pi(s) is the reciprocal of a polynomial in s and in q−sν for finitely
many places ν which has no zeroes in the right-half plane Re(s) > 0.

The aim of this work is to get and study a similar relationship between the Eisenstein series
defined over adèlizations of higher-rank groups. In particular, for the following cases.
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Let F be a totally-real number field, K a CM field with totally-real subfield F , and B a totally-
indefinite quaternion algebra over F . The reductive algebraic groups that will be considered
in this paper are of the form

G =


{X ∈ GL2n(F ) : tXJnX = Jn},
{X ∈ SL2n(K) : tXρJnX = Jn},
{X ∈ GL2n(B) : tX ιJnX = Jn}

(∗∗)

where ρ ∈ Gal(K/F ) is the non-trivial Galois involution of K over F , ι : B → B is the
canonical involution of the quaternion algebra B, and the matrix Jn ∈ M2n(Q) is defined by

Jn =



(
0 −1n

1n 0

)
,(

0 1n

1n 0

)
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On Class Numbers of Algebraic Function Fields

Hülya İşcan

In the study, given a field F of an algebraic functions of one variable having a finite field K
as exact field of constants, the numerator of the zeta function of F is used to find the class
number of F . The coefficients a5, a6, a7, a8, a9, a10 of the numerator of the zeta function of
such a field F are calculated. These coefficients are necessary to obtain class number of F .

Secondly, the solution of the class number 3 problem in an algebraic function field of one
variable over a finite exact constant field has been studied the all conditions that the class
number is 3 have been determined depending on the genus of the function field, number of
elements of constant field and the number of prime divisors.

Finally, the class number for a hyperelliptic function field of genus g, constant field K = GF (p)
and equation y2 = xn + a(a ∈ K∗) has been obtained as h = pg + 1 where n and p are prime
numbers greather than 2 and p is congruent to a primitive root modulo n.
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Gamma Rings

Hatice KANDAMAR

Since Nobusawa introduced the notion of gamma rings in 1964 as a ternary algebraic system,
various studies have been done mainly on the structure of gamma rings; for instance, gen-
eralizations of Wedderburn Artin theorems, of the Chavalley-jacobson density theorem, and
of the radical theory of rings. In this presentation, we will give almost all major results on
gamma rings obtained so far. And we will also give a construction of quotient rings of prime
gamma rings and some properties of that rings.

Aydın Adnan Menderes University, Aydın, TURKEY
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Products generalizing the factorial

Ali Ulaş Özgür KİŞİSEL

Let p(x) be a polynomial with integer coefficients. Let Ω(n) = p(1)p(2) . . . p(n). We investigate
the question whether or not Ω(n) can be a square, or squarefull, especially when p(x) is a
quadratic polynomial.
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On Strongly Prime Right Ideals

Feride KUZUCUOǦLU

Let R be an associative ring and I(6= R) a right ideal of R. The right ideal I is defined to be
strongly prime if for each x and y in R, xIy ⊆ I and xy ∈ I imply that either x ∈ I or y ∈ I.

The goal of this work is to prove that the intersection radr(R) of all strongly prime right
ideals coincides with the largest locally nilpotent ideal of the ring R. Also, we give some
characterization of rings through strongly prime right ideal.

References

[1] K. Chiba and H. Tominaga, On strongly regular rings, Proc. Japan Acad. 49 (1973)
435-437.

[2] N. J. Divinsky, Rings and radicals, University of Toronto Press, 1965.

[3] A. Kaya, One sided ideals of a strongly prime type, Proc. I. National Mathematics
Symposium, Ankara, 31 Aug.-2 Sept (1988) 95-96.

[4] A. Kaya and F. Kuzucuoglu, On strongly regular rings, Tr. J. Math. 20 (1996) 395-398.

[5] N. K. Kim and Y. Lee, On right quasi-duo rings which are π-regular, Bull. Korean Math.
Soc. 37 (2000) 217-227.

[6] K. Koh, On one sided ideals of a prime type, Proc. Amer. Math. Soc. 28 (1971) 321-329.

[7] K. Koh, Quasisimple modules and other topics in ring theory, Lectures on rings and
modules, Springer-Verlag, band 246.

[8] I. Mogami and M. Hongan, Note on commutativity of rings, Math. J. Okayama Univ.
20 (1978) 21-24.

[9] A. L. Rosenberg, The left spectrum, the Levitzki radicals, noncommutative schemes,
Proc. Natl. Acad. Sci. USA 87 (1990) 8583-8586.

15



[10] H. Tominaga, On s-unital rings, Math,.J. Okayama Univ. 18 (1976) 117-133.

[11] H. Tominaga, On s-unital rings II, Math,.J. Okayama Univ. 19 (1977) 171-182.

[12] Edward T. Wong, Almost commutative rings and their integral extensions, Math. J.
Okayama Univ. 18(2) (1976) 105-111.

Department of Mathematics, University of Hacettepe,
06532 Beytepe,Ankara, Turkey

email: feridek@hacettepe.edu.tr

Universal Groups

Mahmut KUZUCUOǦLU

In the history of algebra, universal objects were always in the center of the research area. In
this talk we will discuss the universal locally finite groups and regular limit groups. A group
is called a locally finite group if every finitely generated subgroup is a finite group.

A locally finite group U is called a universal locally finite group if:

(a) every finite group can be embedded into U ,

(b) any two isomorphic finite subgroups of U are conjugate in U .

We will remind the basic properties of the universal locally finite groups discussed in [2] and
the regular limit groups constructed by O. H. Kegel in [3].

It is well known by Cayley’s Theorem that, every group can be embedded into a symmetric
group by its regular permutation representation. One of the interesting properties of regular
representation is that, if we embed a finite group G by its right regular representation into
Sym(G), then any two finite isomorphic subgroups of G are conjugate in Sym(G). The first
example of a countable universal locally finite group is given by P. Hall in [1], these groups
now are called Hall universal groups. Hall universal groups plays the role of a universe for
finite groups and countably infinite locally finite groups this explains the name.

Let κ be a given infinite cardinal. There are two questions relating with the universal locally
finite groups.

(1) Are there universal locally finite groups of cardinality κ?

(2) Are any two locally finite universal groups of cardinality κ isomorphic?

Hall answered both questions positively for countable universal locally finite groups. For any
given uncountable cardinality κ, existence of 2κ non-isomorphic universal locally finite groups
of cardinality κ is given by S. Shelah and A. J. Macintyre in [4]. In particular the answer to
the second question is negative.

Let Ω0 be an infinite set of cardinal |Ω0| = κ0. Let’s denote by S1 := Sym(Ω0) the symmetric
group of cardinal κ1 = 2κ0 and Ω1 = S1. If for n ∈ N, one has already obtained by induction
a set Ωn of cardinal κn, put Sn+1 = Sym(Ωn), Ωn+1 = Sn and embed Sn+1 into Sn+2 :=
Sym(Ωn+1) by the right regular representation. Then S =

⋃∞
i=1 Si is a regular limit group
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constructed by O. H. Kegel in [3]. Kegel studied the basic properties of these regular limit
groups. In some sense they have similar character as Hall universal group.

Basic Properties of regular limit groups obtained by Kegel

(i) S is a simple group.

(ii) Any two isomorphic finitely generated subgroup of S are conjugate in S.

(iii) Every group G of cardinality less than cardinality of S can be embedded into S. They
are universal groups in this sense.

A subgroup B of S is called a bounded subgroup if B is contained in Sn for some n ∈ N.
In infinite group theory, one of the interesting question is that, if G is a given infinite group;
whether it has a subgroup isomorphic to itself. One can ask the stronger question: whether
Does there exist a subgroup B in G such that CG(B) is isomorphic to G? We prove that for
regular limit groups for any centerless bounded subgroup B in G the answer is positive.

Theorem 1. (O. H. Kegel, M. Kuzucuoǧlu) Let B be a bounded subgroup of a regular limit
group S. Then C

S
(B) ∼= B o S .

Moreover regular limit groups satisfy the same property as Hall universal groups namely:

Lemma 2. (O. H. Kegel, M. Kuzucuoǧlu) The regular limit group S can be written as S =
CmCm, product of conjugacy classes Cm of conjugates of elements of order m for any m ≥ 2.

Lemma 3. (O. H. Kegel, M. Kuzucuoǧlu) In the regular limit group S every element is a
commutator.
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The Normal Structure and Extremal Subgroups in the
Unipotent Subgroup of the Lie type Groups

V.M. LEVCHUK

Taking G to be a Lie type group over a field K and U to be the unipotent radical of a Borel
subgroup in G. The normal structure of certain groups U is considered in [1]. The area
has been under active investigation since 1970’s. Partially this is represented in Kondratiev’s
survey [2]. In [3], along with the solution problem (1.5) from [2], the description of automor-
phisms of the group U , which had been know earlier for charK 6= 2, 3 (Gibbs, 1970), was
completed. The approach of [3] uses the description of maximal abelian normal subgroups of
the unitriangular group UT (n,K) and close structural connections of certain groups U and
associated Lie rings.

For the purpose of applications to symplectic amalgams and to CFSG revision, C. Parker and
P. Rowley [4, 5, 6] studied groups U with an extremal subgroup. We describe all maximal
abelian normal subgroups of the group U . This gives a new description of the extremal
subgroups in U . In finite groups U , we consider the problem about large abelian subgroups,
[2, Problem 1.6].

The work is supported by the Russian Foundation for Basic Research (grant 09-01-00717).
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Quadratic forms in even characteristic and
maximal/minimal curves over finite fields

Ferruh ÖZBUDAK

We present some of our results on quadratic forms of codimension 2 in even characteristic and
maximal/minimal curves over finite fields. This is a report on our joint studies with Elif Saygı
and Zülfükar Saygı.
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Counting Lines on Algebraic Surfaces

Sinan SERTÖZ

This is going to be mostly an expository talk on certain aspects of counting lines on algebraic
surfaces over the complex numbers. The problem originated with Segre’s 1943 paper where he
produced some proofs using elimination theory and these proofs are not yet superseded by the
so called modern techniques. Recently Boissiere and Sarti gave group theoretical methods to
counts such lines. The problem of finding the maximal number of lines lying on an algebraic
surface is still wide open for degrees beyond four. Employing Grassmannian techniques to the
problem may be a decent attempt to match Segre’s proofs. Despite its amenability to number
theoretical approaches, the realm of K3 surfaces is also void of any satisfactory results in this
direction.
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Character Degrees of Polyadic Groups

Mohammad SHAHRYARI

A non-empty set G together with an n-ary operation f : Gn → G is called an n-ary groupoid
and is denoted by (G, f).

According to the general convention used in the theory of n-ary systems, the sequence of
elements xi, xi+1, . . . , xj is denoted by xji . In the case j < i it is the empty symbol. If xi+1 =

xi+2 = . . . = xi+t = x, then instead of xi+ti+1 we write
(t)
x . In this convention f(x1, . . . , xn) =

f(xn1 ) and

f(x1, . . . , xi, x, . . . , x︸ ︷︷ ︸
t

, xi+t+1, . . . , xn) = f(xi1,
(t)
x , xni+t+1).

An n-ary groupoid (G, f) is called (i, j)-associative, if

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j ) (††)
holds for all x1, . . . , x2n−1 ∈ G. If this identity holds for all 1 6 i < j 6 n, then we say that
the operation f is associative and (G, f) is called an n-ary semigroup.

If, for all x0, x1, . . . , xn ∈ G and fixed i ∈ {1, . . . , n}, there exists an element z ∈ G such that

f(xi−1
1 , z, xni+1) = x0, (‡‡)

then we say that this equation is i-solvable or solvable at the place i. If this solution is unique,
then we say that (‡‡) is uniquely i-solvable.

An n-ary groupoid (G, f) uniquely solvable for all i = 1, . . . , n, is called an n-ary quasigroup.
An associative n-ary quasigroup is called an n-ary group or a polyadic group. In the binary
case (i.e., for n = 2) it is a usual group.

In [1], representation theory of polyadic groups are investigated by the author and W. Dudek.
In this talk we show that some of the well-known properties of character degrees in ordinary
finite groups, have interesting general forms in the case of polyadic groups. Among these
properties, we give two samples here;

Theorem 1. Let G be a finite n-ary group and χ be an irreducible complex character of G.
Then χ(1) divides (n− 1)|G|.
Theorem 2. Suppose G is finite n-ary group. Then

(n− 1)|G| =
∑

χ∈Irr(G)

χ(1)2.
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On the number of rational points on algebraic curves
over finite fields

Henning STICHTENOTH

For a curve C over a finite field Fq (projective, non-singular, absolutely irreducible) we denote
by g(C) (resp. N(C)) the genus (resp. the number of Fq-rational points) of C. The classical
Hasse-Weil Theorem says that for given q and g = g(C),

q + 1− 2g
√
q ≤ N(C) ≤ q + 1 + 2g

√
q ,

i.e. N(C) lies in a finite interval. A lot of effort has been put into improving the upper bound
of this interval, partly motivated by applications of curves with ‘many’ points in coding theory
and cryptography, but also since ‘the question represents an attractive mathematical challenge’
(van der Geer).

In this talk, we change the point of view slightly: we fix the finite field Fq and a non-negative
integer N and ask for all possible values of g such that there exists a curve C over Fq of genus
g,
having exactly N rational points. As follows immediately from the Hasse-Weil Theorem, g
must satisfy the condition

g ≥ N − (q + 1)

2
√
q

.

Our main result is

Theorem. Given a finite field Fq and an integer N ≥ 0, there is an integer g0 ≥ 0 such that
for every g ≥ g0, there exists a curve C over Fq with g(C) = g and N(C) = N .

Sabancı University, Istanbul, Turkey
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On some nice permutations of finite fields

Alev TOPUZOǦLU

Three main problems concerning permutations of finite fields are:

* construction of new classes of permutation polynomials * enumeration of special classes *
cycle structure of special classes.

We shall address these problems for some ”nice” permutations.

Sabancı University

Small gaps between primes and almost primes

Cem Yalçın YILDIRIM

An overview of the methods and results concerning small gaps between primes will be
presented. The counterparts for almost primes and their consequences for the values taken
on by certain arithmetical functions will also be noted. The material is from the works with
Goldston, Graham and Pintz.
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Short Talks

Locally Finite Groups with Anticentral Elements

Kıvanç ERSOY

Let G be a group. An element a in G satisfying aG′ = aG is called an anticentral element.
G.

Example. Let G = UT (3, K) be the group of 3×3 upper triangular matrices whose diagonal
entries are equal to 1, over an infinite locally finite field K of characteristic p. Consider

a =

 1 1 0
0 1 1
0 0 1

 ∈ G. Now, G′ is the subgroup of G consisting of elements x ∈ G such that

x12 = x23 = 0. Then, observe that

aG′ = {

 1 1 y
0 1 1
0 0 1

 : y ∈ K} = aG.

Therefore, a is an anticentral element in G.

In [4], Ladisch proved that every finite group with an anticentral element is solvable. However,
there are examples of infinite groups with an anticentral element which are not solvable.

In this work, our first aim is to answer the following question:

Question. Is every locally finite group with an anticentral element locally solvable?

First, by using a theorem of Hartley on centralizers in locally finite groups (see [2, Corollary
A1]), we observed that if G is a locally finite group with an anticentral element a and if
there exists x ∈ G such that CG(x) is finite, then G is locally solvable. For groups with an
anticentral element of prime order, by using a theorem of Kegel on groups with a splitting
automorphism of prime order (see [3]), we obtained the following result:

Proposition 1. Let G be a group with an anticentral element a of prime order p.

1. If p = 2 then G′ is abelian.

2. If p = 3 then G′ is nilpotent of class at most 3.

3. If G is locally finite, then G′ is locally nilpotent.

Moreover, one can obtain the following result as a consequence of a theorem of Philip Hall
(see [5, 14.5.3]):

Lemma 2. Let G be a group with an anticentral element. If γn(G) is finite for some n (where
γn(G) denotes the n-th term of the lower central series of G), then G is solvable.

In particular, if G′ is finite, then G is solvable.
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The following result is a consequence of the basic properties of a group with an anticentral
element:

Proposition 3. Let G be a group with an anticentral element a ∈ G. If a ∈ Zα(G) for some
ordinal α (where Zα(G) denotes the α-th term of the transfinitely extended upper central series
of G), then G is hypercentral.

In this work, we considered periodic linear groups and finitary permutation groups containing
anticentral elements and we proved the following main results:

Theorem 4. Let G be a locally finite group with an F−linear commutator subgroup G′ where
F is the algebraic closure of Fp. If G has an anticentral element of order n = mps where
(m, p) = 1, then one of the following cases occurs:

1. G is solvable.

2. CG′(a) has an infinite abelian subgroup of exponent pk for some 1 ≤ k ≤ s.

In particular, by Theorem 4, every periodic linear group with a semisimple anticentral element
is solvable.

Theorem 5. Let G ≤ Sym(Ω) be a locally finite group with an anticentral element a. If
supp(a) is finite, then G is locally solvable.

Therefore, we deduce that if a group G containing an anticentral element has a finitary permu-
tational representation, then it is solvable. Also we proved the following result about groups
with anticentral elements which are both locally and residually finite:

Theorem 6. Let G be a residually finite and locally finite group with an anticentral element
a. Then G is locally solvable.

A non-perfect group G is called a Camina group if every element of G\G′ is anticentral. Dark
and Scoppola proved in [1] that a finite Camina groups are solvable. There are examples of
infinite finitely generated Camina groups constructed by Olshanskii. In this work, we will give
a method to construct infinite non-solvable Camina groups with a periodic linear commutator
subgroup. Indeed we proved the following:

Theorem 7. For each connected algebraic group H over an algebraically closed field of charac-
teristic p, there exist countably many non-isomorphic infinite Camina groups G with G′ ∼= H.
In particular, if H is semisimple then G is not solvable.

This is an ongoing study under the supervision of Prof. Mercede Maj and Prof. Patrizia
Longobardi from University of Salerno. This study is supported by TÜBİTAK BİDEB 2219
International Post Doctoral Research Fellowship. The speaker thanks TÜBİTAK for the
support.
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Radically Perfect Ideals in Commutative Rings

Sevgi HARMAN

We call an ideal I of a commutative ring R radically perfect if among the ideals of R whose
radical is equal to the radical of I the one with the least number of generators has this number
of generators equal to the height of I ([4], [5], [6]). This is a generalization of the notion of
set theoretic complete intersection of ideals in Noetherian rings to rings that need not be
Noetherian.

The notion of set theoretic complete intersection was first considered by Kronecker [7] in late
19th century. Since then an enormous amount of research has evolved around these types
of questions [1]. Among them still remaining unsolved is the question whether height two
ideals in the polynomial ring K[X, Y, Z] are set theoretic complete intersection where K is
of characteristic zero. In search of an answer to this conjecture, we consider the following
question under which circumstances on an integral domain R can we conclude that all the
prime ideals of the polynomial ring R[X] over R are radically perfect? In this talk, I will
present conditions on R that give an answer to this question.
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On Modules over Group Rings

Tamer KOŞAN

I will present the main ideas in the joint paper [1] written with Tsiu-Kwen Lee (National
Taiwan University, Taiwan) and Yiqiang Zhou (Memorial University of Newfoundland, St.
Johns, Canada).

Let M be a right module over a ring R and let G be a group. The set MG of all formal
finite sums of the form

∑
g∈Gmgg where mg ∈ M becomes a right module over the group

ring RG under addition and scalar multiplication similar to the addition and multiplication
of a group ring. A module MR is called semisimple if MR is a direct sum of simple
R-modules, or equivalently if every submodule of MR is a direct summand. A ring R
is semisimple Artinian iff R is a semisimple right (or left) module over R. The famous
Maschke’s Theorem states that, for a finite group G, a group ring RG is a semisimple
Artinian ring iff R is a semisimple Artinian ring and |G| is invertible in R. Generally, a
group ring RG is a semisimple Artinian ring iff R is a semisimple Artinian ring and G is a
finite group whose order is invertible in R, and this is called the generalized Maschke Theo-
rem by Connell [2]. The following theorem below is a module-theoretic version of this theorem.

Theorem Let MR be a nonzero module and let G be a group. The following are equivalent:

(1) MG is a semisimple module over RG.

(2) MR is a semisimple module and G is a finite group with |G|−1 ∈ EndR(M).
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Class number one problem

Ömer Küçüksakallı

The class number is an important invariant in algebraic number theory. Its history can be
traced back to Fermat, who made a speculation about integers of the form x2 + 5y2. Prime
numbers represented by quadratic forms x2 + ny2 are closely related with the class num-
ber of Q(

√
−n). Many great mathematicians (Euler, Lagrange, Legendre, Gauss, Dirichlet,

Dedekind, Hilbert, . . . ) have made contributions to this classification problem. In this talk we
will give a brief history of class number by focusing on related works of these mathematicians
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The Hamming distance of cyclic codes of length ps over
GR(p2,m)

Hakan ÖZADAM

The Hamming distance of all cyclic codes of length 2s over Z4 was determined in [2] explicitly.
López-Permouth, Özadam, Özbudak and Szabo generalized this to Galois rings of character-
istic p2 via a Groebner basis approach together with some further arguments. More precisely,
they explicitly determined the Hamming distance of all cyclic codes of length ps over any
Galois ring of characteristic p2. In this talk, an overview of this result will be given.
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Points on Quadratic Twists of the Classical Modular
Curve

Ekin ÖZMAN

A Q-curve is an elliptic curve which is isogenous to all of its Galois conjugates. It is a
mild generalization of an elliptic curve and has many interesting applications such as twisted
Fermat type equations. A quadratic Q-curve is a Q-curve for which the smallest field of
definition is a quadratic field. Quadratic Q-curves of degree N defined over K = Q(

√
d) are

parametrized by a quadratic twist of the classical modular curve X0(N). Unlike X0(N) itself,
it is not immediate to say if the twist has any Q-rational points. We will give an answer to
the following question which is stated by Ellenberg:

For which K and N does the quadratic twist of X0(N) have points over every completion of
Q?
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Characterisation of R/2πZ by means of a linear order

Cem TEZER

There is a natural order on R/2πZ which is not compatible with the group structure. Yet
it does satisfy a weakened compatibility condition which will be shown to be sufficient to
characterise the R/2πZ up to an order preserving isomorphism.
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Hermitian Lattices and Algebraic Curves

Ayberk ZEYTİN

Although the idea has it roots in works of Klein, graphs on surfaces had to wait Grothendieck
to become popular. These objects are combinatorial in nature, yet they encode arithmetical
data, as they admit an action of the absolute Galois group, Gal(Q), which is one of the most
central groups of mathematics lying in the intersection of widely studied subjects. In this talk,
we will define these objects rigorously, then on a few examples see how the absolute Galois
group acts, and finally introduce two Hermitian lattices, that, we claim, may be used to study
the mentioned action.
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