Jensen-Pólya Program for the Riemann Hypothesis and Related Problems

Ken Ono (Emory University) Joint with Michael Griffin, Larry Rolen, and Don Zagier

Riemann's zeta-function

Definition (Riemann)

For $\operatorname{Re}(s) > 1$, define the **zeta-function** by

$$\zeta(s):=\sum_{n=1}^{\infty}\frac{1}{n^s}.$$

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

Riemann's zeta-function

Definition (Riemann)

For $\operatorname{Re}(s) > 1$, define the **zeta-function** by

$$\zeta(s):=\sum_{n=1}^{\infty}\frac{1}{n^s}.$$

Theorem (Fundamental Theorem)

The function ζ(s) has an analytic continuation to C (apart from a simple pole at s = 1 with residue 1).

Riemann's zeta-function

Definition (Riemann)

For $\operatorname{Re}(s) > 1$, define the **zeta-function** by

$$\zeta(s):=\sum_{n=1}^{\infty}\frac{1}{n^s}.$$

Theorem (Fundamental Theorem)

- The function ζ(s) has an analytic continuation to C (apart from a simple pole at s = 1 with residue 1).
- **We have the functional equation**

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \cdot \zeta(1-s).$$

э

(日)、

Hilbert's 8th Problem

Conjecture (Riemann Hypothesis)

Apart from the negative evens, the zeros of $\zeta(s)$ satisfy $\operatorname{Re}(s) = \frac{1}{2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Hilbert's 8th Problem

Conjecture (Riemann Hypothesis)

Apart from the negative evens, the zeros of $\zeta(s)$ satisfy $\operatorname{Re}(s) = \frac{1}{2}$.

"Without doubt, it would be desirable to have a rigorous proof of this proposition; however, I have left this research...because it appears to be unnecessary for the immediate goal of my study...."

Bernhard Riemann (1859)

Important Remarks

Huge Understatement

A proof of RH would clarify our understanding of primes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Important Remarks

Huge Understatement

A proof of RH would clarify our understanding of primes.

What was known?

Important Remarks

Huge Understatement

A proof of RH would clarify our understanding of primes.

What was known?

1 The first "gazillion" zeros satisfy RH (van de Lune,Odlyzko).

(日)、(四)、(E)、(E)、(E)

Important Remarks

Huge Understatement

A proof of RH would clarify our understanding of primes.

What was known?

- The first "gazillion" zeros satisfy RH (van de Lune,Odlyzko).
- @>41% of the zeros satisfy RH (Selberg,Levinson,Conrey,Bui,Young).

Introduction

Jensen-Pólya Program

J. W. L. Jensen (1859–1925)

George Pólya (1887–1985)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Jensen-Pólya Program

Definition

The Riemann Xi-function is the entire order 1 function

$$\Xi(z) := \frac{1}{2} \left(-z^2 - \frac{1}{4} \right) \pi^{\frac{iz}{2} - \frac{1}{4}} \Gamma \left(-\frac{iz}{2} + \frac{1}{4} \right) \zeta \left(-iz + \frac{1}{2} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Jensen-Pólya Program

Definition

The Riemann Xi-function is the entire order 1 function

$$\Xi(z) := \frac{1}{2} \left(-z^2 - \frac{1}{4} \right) \pi^{\frac{iz}{2} - \frac{1}{4}} \Gamma \left(-\frac{iz}{2} + \frac{1}{4} \right) \zeta \left(-iz + \frac{1}{2} \right).$$

Remark

RH is true \iff all of the zeros of $\Xi(z)$ are purely real.

Jensen-Pólya Program

Definition

The Riemann Xi-function is the entire order 1 function

$$\Xi(z) := \frac{1}{2} \left(-z^2 - \frac{1}{4} \right) \pi^{\frac{iz}{2} - \frac{1}{4}} \Gamma \left(-\frac{iz}{2} + \frac{1}{4} \right) \zeta \left(-iz + \frac{1}{2} \right).$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Remark

RH is true \iff all of the zeros of $\Xi(z)$ are purely real.

Question

Is there a criterion for checking this?

Jensen Polynomials

Definition

A polynomial $f(X) \in \mathbb{R}[X]$ is **hyperbolic** if all of its roots are real.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Jensen Polynomials

Definition

A polynomial $f(X) \in \mathbb{R}[X]$ is **hyperbolic** if all of its roots are real.

Definition (Jensen)

If $a : \mathbb{N} \mapsto \mathbb{R}$ is an arithmetic function, then the **Jensen** polynomial of degree *d* and shift *n* is

$$J_a^{d,n}(X) := \sum_{j=0}^d \binom{d}{j} a(n+j) \cdot X^j.$$

Jensen's Criterion

Theorem (Jensen-Pólya (1927))

With $z = -x^2$, define Taylor coefficients $\gamma(n)$

$$\Xi_1(x) = \frac{1}{8} \cdot \Xi\left(\frac{i}{2}\sqrt{x}\right) =: \sum_{n>0} \frac{\gamma(n)}{n!} \cdot x^n.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Jensen's Criterion

Theorem (Jensen-Pólya (1927))

With $z = -x^2$, define Taylor coefficients $\gamma(n)$

$$\Xi_1(x) = \frac{1}{8} \cdot \Xi\left(\frac{i}{2}\sqrt{x}\right) =: \sum_{n>0} \frac{\gamma(n)}{n!} \cdot x^n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RH is equivalent to the hyperbolicity of all of the $J_{\gamma}^{d,n}(X)$.

Jensen's Criterion

Theorem (Jensen-Pólya (1927))

With $z = -x^2$, define Taylor coefficients $\gamma(n)$

$$\Xi_1(x) = \frac{1}{8} \cdot \Xi\left(\frac{i}{2}\sqrt{x}\right) =: \sum_{n>0} \frac{\gamma(n)}{n!} \cdot x^n.$$

RH is equivalent to the hyperbolicity of all of the $J_{\gamma}^{d,n}(X)$.

What was known?

• Chasse proved hyperbolicity for $d \le 2 \cdot 10^{17}$ and n = 0.

Jensen's Criterion

Theorem (Jensen-Pólya (1927))

With $z = -x^2$, define Taylor coefficients $\gamma(n)$

$$\Xi_1(x) = \frac{1}{8} \cdot \Xi\left(\frac{i}{2}\sqrt{x}\right) =: \sum_{n>0} \frac{\gamma(n)}{n!} \cdot x^n.$$

RH is equivalent to the hyperbolicity of all of the $J_{\gamma}^{d,n}(X)$.

What was known?

- Chasse proved hyperbolicity for $d \le 2 \cdot 10^{17}$ and n = 0.
- ② The hyperbolicity is known for d ≤ 3 by work of Csordas, Norfolk and Varga, and Dimitrov and Lucas.

Jensen's Criterion

Theorem (Jensen-Pólya (1927))

With $z = -x^2$, define Taylor coefficients $\gamma(n)$

$$\Xi_1(x) = \frac{1}{8} \cdot \Xi\left(\frac{i}{2}\sqrt{x}\right) =: \sum_{n>0} \frac{\gamma(n)}{n!} \cdot x^n.$$

RH is equivalent to the hyperbolicity of all of the $J_{\gamma}^{d,n}(X)$.

What was known?

- Chasse proved hyperbolicity for $d \le 2 \cdot 10^{17}$ and n = 0.
- ② The hyperbolicity is known for d ≤ 3 by work of Csordas, Norfolk and Varga, and Dimitrov and Lucas.
- Othing for d ≥ 4.

New Theorem

Theorem 1 (Griffin, O, Rolen, Zagier)

For each d, all but (possibly) finitely many $J_{\gamma}^{d,n}(X)$ are hyperbolic.

New Theorem

Theorem 1 (Griffin, O, Rolen, Zagier)

For each d, all but (possibly) finitely many $J_{\gamma}^{d,n}(X)$ are hyperbolic.

Remarks

1 Theorem 1 is new evidence supporting RH.

New Theorem

Theorem 1 (Griffin, O, Rolen, Zagier)

For each d, all but (possibly) finitely many $J_{\gamma}^{d,n}(X)$ are hyperbolic.

Remarks

- **1** Theorem 1 is new evidence supporting RH.
- We actually "locate" the real zeros!

New Theorem

Theorem 1 (Griffin, O, Rolen, Zagier)

For each d, all but (possibly) finitely many $J_{\gamma}^{d,n}(X)$ are hyperbolic.

Remarks

- **1** Theorem 1 is new evidence supporting RH.
- *We actually "locate" the real zeros!*
- **③** Wagner is generalizing to general L-functions.

Hermite Polynomials

Definition

The **Hermite polynomials** $\{H_d(X) : d \ge 0\}$ are the orthogonal polynomials with respect to the measure $\mu(X) := e^{-X^2}$.

Hermite Polynomials

Definition

The **Hermite polynomials** $\{H_d(X) : d \ge 0\}$ are the orthogonal polynomials with respect to the measure $\mu(X) := e^{-X^2}$.

Example

The first few Hermite polynomials

$$H_0(X) = 1,$$

$$H_1(X) = 2X,$$

$$H_2(X) = 4X^2 - 2,$$

$$H_3(X) = 8X^3 - 12X,$$

$$H_4(X) = 16X^4 - 48X^2 + 12$$

Properties of Hermite Polynomials

Lemma

The Hermite polynomials satisfy the following:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Properties of Hermite Polynomials

Lemma

The Hermite polynomials satisfy the following:

• Each $H_d(X)$ is hyperbolic with d distinct roots.

Properties of Hermite Polynomials

Lemma

The Hermite polynomials satisfy the following:

- Each $H_d(X)$ is hyperbolic with d distinct roots.
- If d₁ > d₂, then there is a zero of H_{d1}(X) between any two zeros of H_{d2}(X).

Properties of Hermite Polynomials

Lemma

The Hermite polynomials satisfy the following:

- Each $H_d(X)$ is hyperbolic with d distinct roots.
- If d₁ > d₂, then there is a zero of H_{d1}(X) between any two zeros of H_{d2}(X).
- § If S_d denotes the "suitably normalized" zeros of $H_d(X)$, then

 $S_d \longrightarrow$ Wigner's Semicircle Law.

Riemann Ξ -function case

Remark

We define **renormalized** Jensen polynomials $\widehat{J}_{\gamma}^{d,n}(X)$.

Riemann Ξ-function case

Remark

We define **renormalized** Jensen polynomials $\widehat{J}_{\gamma}^{d,n}(X)$.

Theorem 1 (Griffin, O, Rolen, Zagier)

For each degree $d \ge 1$ we have that

$$\lim_{n\to+\infty}\widehat{J}_{\gamma}^{d,n}(X)=H_d(X).$$

For each d, all but (possibly) finitely many $J_{\gamma}^{d,n}(X)$ are hyperbolic.

Our Results on RH

Degree 2 Normalized Jensen polynomials

n	$\widehat{J_{\gamma}}^{2,n}(X)$
100	$pprox 3.9586X^2 + 0.6107X - 1.9914$
200	$pprox 3.9772X^2 + 0.4522X - 1.9927$
300	$\approx 3.9841X^2 + 0.3777X - 1.9942$
400	$\approx 3.9877X^2 + 0.3318X - 1.9953$
:	:
10 ⁸	$\approx 3.9999X^2 + 0.0007X - 2.0000$
:	:
∞	$H_2(X) = 4X^2 - 2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Degree 3 Normalized Jensen polynomials

n	$\widehat{J_{\gamma}}^{3,n}(X)$
100	$\approx 7.8160X^3 + 3.0022X^2 - 11.5732X - 1/2370$
200	$\approx 7.8983X^3 + 2.2409X^2 - 11.7522X - 0.9060$
300	$\approx 7.9288X^3 + 1.8770X^2 - 11.8237X - 0.7526$
400	$pprox 7.9450X^3 + 1.6515X^2 - 11.8625X - 0.6589$
:	:
10 ⁸	$\approx 7.9999X^3 + 0.0039X^2 - 11.9999X + 0.0015$
:	
∞	$H_3(X) = 8X^3 - 12X$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Random Matrix Model Predictions

Freeman Dyson

Hugh Montgomery

Andrew Odlyzko

Random Matrix Model Predictions

Freeman Dyson

Hugh Montgomery

Andrew Odlyzko

Gaussian Unitary Ensemble (GUE) (Dyson, Montgomery ('70s)) The nontrivial zeros of $\zeta(s)$ appear to be "distributed like" the eigenvalues of random Hermitian matrices.

Relation to our work

Theorem (Griffin, O, Rolen, Zagier)

GUE is true for the Riemann zeta-function in derivative aspect.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Relation to our work

Theorem (Griffin, O, Rolen, Zagier)

GUE is true for the Riemann zeta-function in derivative aspect.

Sketch of Proof

• The $J_{\gamma}^{d,n}(X)$ model the zeros of the nth derivative $\Xi_1^{(n)}(X)$.

Relation to our work

Theorem (Griffin, O, Rolen, Zagier)

GUE is true for the Riemann zeta-function in derivative aspect.

Sketch of Proof

- The $J^{d,n}_{\gamma}(X)$ model the zeros of the nth derivative $\Xi_1^{(n)}(X)$.
- Since the Laguerre-Pólya class is closed under differentiation, the derivatives are predicted to satisfy GUE.

Relation to our work

Theorem (Griffin, O, Rolen, Zagier)

GUE is true for the Riemann zeta-function in derivative aspect.

Sketch of Proof

- The $J_{\gamma}^{d,n}(X)$ model the zeros of the nth derivative $\Xi_1^{(n)}(X)$.
- Since the Laguerre-Pólya class is closed under differentiation, the derivatives are predicted to satisfy GUE.
- 3 For fixed d, we proved that

$$\lim_{n\to+\infty}\widehat{J}_{\gamma}^{d,n}(X)=H_d(X).$$

Relation to our work

Theorem (Griffin, O, Rolen, Zagier)

GUE is true for the Riemann zeta-function in derivative aspect.

Sketch of Proof

- The $J_{\gamma}^{d,n}(X)$ model the zeros of the nth derivative $\Xi_1^{(n)}(X)$.
- Since the Laguerre-Pólya class is closed under differentiation, the derivatives are predicted to satisfy GUE.
- 3 For fixed d, we proved that

$$\lim_{n\to+\infty}\widehat{J}_{\gamma}^{d,n}(X)=H_d(X).$$

The zeros of the {H_d(X)} and the eigenvalues in GUE both satisfy Wigner's Semicircle Distribution.

Theorem (Pustylnikov (2001), Coffey (2009)) As $n \to +\infty$, we have

$$\xi^{(2n)}(1/2) = \frac{(2n)(2n-1)(2n-2)^{\frac{-1}{4}}}{2^{2n-2}\ln(2n-2)^{\frac{1}{4}}} \left[\ln\left(\frac{2n-2}{\pi}\right) - \ln\ln\left(\frac{2n-2}{\pi}\right) + o(1) \right]^{2n-\frac{3}{2}} \\ \times \exp\left(-\frac{2n-2}{\ln(2n-2)}\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Pustylnikov (2001), Coffey (2009)) As $n \to +\infty$, we have

$$\xi^{(2n)}(1/2) = \frac{(2n)(2n-1)(2n-2)^{\frac{-1}{4}}}{2^{2n-2}\ln(2n-2)^{\frac{1}{4}}} \left[\ln\left(\frac{2n-2}{\pi}\right) - \ln\ln\left(\frac{2n-2}{\pi}\right) + o(1) \right]^{2n-\frac{3}{2}} \\ \times \exp\left(-\frac{2n-2}{\ln(2n-2)}\right).$$

(日)、

ъ

Remarks

Derivatives essentially drop to 0 for "small" n.

Theorem (Pustylnikov (2001), Coffey (2009)) As $n \to +\infty$, we have

$$\xi^{(2n)}(1/2) = \frac{(2n)(2n-1)(2n-2)^{\frac{-1}{4}}}{2^{2n-2}\ln(2n-2)^{\frac{1}{4}}} \left[\ln\left(\frac{2n-2}{\pi}\right) - \ln\ln\left(\frac{2n-2}{\pi}\right) + o(1) \right]^{2n-\frac{3}{2}} \\ \times \exp\left(-\frac{2n-2}{\ln(2n-2)}\right).$$

Remarks

- Derivatives essentially drop to 0 for "small" n.
- **2** After this initial drop, then they have **exponential growth**.

Theorem (Pustylnikov (2001), Coffey (2009)) As $n \to +\infty$, we have

$$\xi^{(2n)}(1/2) = \frac{(2n)(2n-1)(2n-2)^{\frac{-1}{4}}}{2^{2n-2}\ln(2n-2)^{\frac{1}{4}}} \left[\ln\left(\frac{2n-2}{\pi}\right) - \ln\ln\left(\frac{2n-2}{\pi}\right) + o(1) \right]^{2n-\frac{3}{2}} \\ \times \exp\left(-\frac{2n-2}{\ln(2n-2)}\right).$$

Remarks

- Derivatives essentially drop to 0 for "small" n.
- **2** After this initial drop, then they have **exponential growth**.
- These asymptotics are insufficient for approximating $J_{\gamma}^{d,n}(X)$.

Our Results on RH

First 20 Taylor coefficients of $\Xi_1(x)$

m	\hat{b}_m
0	6.214 009 727 353 926 (-2)
1	7.178 732 598 482 949 (-4)
2	2.314 725 338 818 463 (-5)
3	1.170 499 895 698 397 (-6)
4	7.859 696 022 958 770 (-8)
5	6.474 442 660 924 152 (-9)
6	6.248 509 280 628 118 (-10)
7	6.857 113 566 031 334 (-11)
8	8.379 562 856 498 463 (-12)
9	1.122 895 900 525 652 (-12)
10	1.630 766 572 462 173 (-13)
11	2.543 075 058 368 090 (-14)
12	4.226 693 865 498 318 (-15)
13	7.441 357 184 567 353 (-16)
14	1.380 660 423 385 153 (-16)
15	2.687 936 596 475 912 (-17)
16	5.470 564 386 990 504 (-18)
17	1.160 183 185 841 992 (-18)
18	2.556 698 594 979 872 (-19)
19	5.840 019 662 344 811 (-20)
20	1.379 672 872 080 269 (-20)

Arbitrary precision asymptotics for $\Xi^{(2n)}(0)$

Notation

Let

$$F(n) := \int_1^\infty (\log t)^n t^{-3/4} \theta_0(t) dt$$

Arbitrary precision asymptotics for $\Xi^{(2n)}(0)$

Notation

Let

$$F(n) := \int_1^\infty (\log t)^n t^{-3/4} \theta_0(t) dt,$$

where

$$heta_0(t):=\sum_{k=1}^\infty e^{-\pi k^2 t}.$$

Arbitrary precision asymptotics for $\Xi^{(2n)}(0)$

Notation

Let

$$F(n) := \int_1^\infty (\log t)^n t^{-3/4} \theta_0(t) dt,$$

where

$$heta_0(t) := \sum_{k=1}^\infty e^{-\pi k^2 t}.$$

2 Following Riemann, we have

$$\Xi^{(n)}(0) = (-1)^{n/2} \cdot \frac{32\binom{n}{2}F(n-2) - F(n)}{2^{n+2}}$$

Arbitrary precision asymptotics for $\Xi^{(2n)}(0)$

Notation

Let

$$F(n) := \int_1^\infty (\log t)^n t^{-3/4} \theta_0(t) dt,$$

where

$$heta_0(t) := \sum_{k=1}^\infty e^{-\pi k^2 t}.$$

2 Following Riemann, we have

$$\Xi^{(n)}(0) = (-1)^{n/2} \cdot \frac{32\binom{n}{2}F(n-2) - F(n)}{2^{n+2}}$$

• Let $L = L(n) \approx \log(\frac{n}{\log n})$ be the unique positive solution of the equation $n = L \cdot (\pi e^L + \frac{3}{4})$.

Arbitrary precision asymptotics

To all orders, as $n \to +\infty$, there are $b_k \in \mathbb{Q}(L)$ such that

$$F(n) \sim \sqrt{2\pi} \frac{L^{n+1}}{\sqrt{(1+L)n - \frac{3}{4}L^2}} e^{L/4 - n/L + 3/4} \left(1 + \frac{b_1}{n} + \frac{b_2}{n^2} + \cdots\right),$$

where $b_1 = \frac{2L^4 + 9L^3 + 16L^2 + 6L + 2}{24(L+1)^3}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Arbitrary precision asymptotics

Theorem (Griffin, O, Rolen, Zagier)
To all orders, as
$$n \to +\infty$$
, there are $b_k \in \mathbb{Q}(L)$ such that

$$F(n) \sim \sqrt{2\pi} \frac{L^{n+1}}{\sqrt{(1+L)n - \frac{3}{4}L^2}} e^{L/4 - n/L + 3/4} \left(1 + \frac{b_1}{n} + \frac{b_2}{n^2} + \cdots\right),$$
where $b_1 = \frac{2L^4 + 9L^3 + 16L^2 + 6L + 2}{24(L+1)^3}$.

Remarks

1 The approximation without any b_m improves previous results.

Arbitrary precision asymptotics

Theorem (Griffin, O, Rolen, Zagier)
To all orders, as
$$n \to +\infty$$
, there are $b_k \in \mathbb{Q}(L)$ such that

$$F(n) \sim \sqrt{2\pi} \frac{L^{n+1}}{\sqrt{(1+L)n - \frac{3}{4}L^2}} e^{L/4 - n/L + 3/4} \left(1 + \frac{b_1}{n} + \frac{b_2}{n^2} + \cdots\right),$$
where $b_1 = \frac{2L^4 + 9L^3 + 16L^2 + 6L + 2}{24(L+1)^3}$.

Remarks

1 The approximation without any b_m improves previous results.

2 Using two terms (i.e. b_1) suffices for our RH application.

Our Results on RH

Example: $\widehat{\Xi}^{(2n)}(0)$ is the two-term approximation

2n	$\widehat{\Xi}^{(2n)}(0)$	$\Xi^{(2n)}(0)$	$\widehat{\Xi}^{(2n)}(0)/\Xi^{(2n)}(0)$
10	$\approx -5.2990317111 \times 10^{-5}$	$\approx -5.3038634278 \times 10^{-5}$	≈ 0.999089019
100	$pprox 4.7698966907 imes 10^{-4}$	$pprox 4.7698430706 imes 10^{-4}$	≈ 1.000011241
1000	$pprox 7.1959898985 imes 10^{236}$	$\approx 7.1959875700 \times 10^{236}$	≈ 1.00000335
10000	$\approx 1.8884738933 \times 10^{4248}$	$\approx 1.8884738827 \times 10^{4248}$	≈ 1.00000005
100000	$\approx 1.6590460773 \times 10^{56328}$	$\approx 1.6590460772 \times 10^{56328}$	≈ 1.000000000

Our Results on RH

How do these asymptotics imply Theorem 1?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How do these asymptotics imply Theorem 1?

Theorem 1 is an example of a general phenomenon!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

General Phenomenon

Hyperbolic Polynomials in Mathematics

Remark

Hyperbolicity of "generating polynomials" is studied in enumerative combinatorics in connection with **unimodality** and **log-concavity**

$$a(n)^2 \geq a(n-1)a(n+1).$$

General Phenomenon

Hyperbolic Polynomials in Mathematics

Remark

Hyperbolicity of "generating polynomials" is studied in enumerative combinatorics in connection with **unimodality** and **log-concavity**

$$a(n)^2 \geq a(n-1)a(n+1).$$

(日) (同) (日) (日)

- Group theory (lattice subgroup enumeration)
- Graph theory
- Symmetric functions
- Additive number theory (partitions)
- . . .

General Phenomenon

Appropriate Growth

Definition

A real sequence a(n) has appropriate growth if

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General Phenomenon

Appropriate Growth

Definition

A real sequence a(n) has **appropriate growth** if for each j we have

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

General Phenomenon

Appropriate Growth

Definition

A real sequence a(n) has **appropriate growth** if for each j we have

$$a(n+j) = a(n) \cdot E(n)^{j} e^{-\delta(n)^{2}(j^{2}/4 + o(1))}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

as $n \to +\infty$

General Phenomenon

Appropriate Growth

Definition

A real sequence a(n) has **appropriate growth** if for each j we have

$$a(n+j) = a(n) \cdot E(n)^{j} e^{-\delta(n)^{2}(j^{2}/4+o(1))}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

as $n \to +\infty$ for some real numbers E(n) > 0 and $\delta(n) \to 0$.

General Phenomenon

Appropriate Growth

Definition

A real sequence a(n) has **appropriate growth** if for each j we have

$$a(n+j) = a(n) \cdot E(n)^{j} e^{-\delta(n)^{2}(j^{2}/4+o(1))}$$

as $n \to +\infty$ for some real numbers E(n) > 0 and $\delta(n) \to 0$.

Remark

An a(n) with an asymptotic formula has appropriate growth

General Phenomenon

Appropriate Growth

Definition

A real sequence a(n) has **appropriate growth** if for each j we have

$$a(n+j) = a(n) \cdot E(n)^{j} e^{-\delta(n)^{2}(j^{2}/4+o(1))}$$

as $n \to +\infty$ for some real numbers E(n) > 0 and $\delta(n) \to 0$.

Remark

An a(n) with an asymptotic formula has appropriate growth if

$$\log\left(\frac{a(n+j)}{a(n)}\right) = A(n)j - B(n)j^2 + o\left(\delta(n)^2\right),$$

General Phenomenon

Appropriate Growth

Definition

A real sequence a(n) has **appropriate growth** if for each j we have

$$a(n+j) = a(n) \cdot E(n)^{j} e^{-\delta(n)^{2}(j^{2}/4+o(1))}$$

as $n \to +\infty$ for some real numbers E(n) > 0 and $\delta(n) \to 0$.

Remark

An a(n) with an asymptotic formula has appropriate growth if

$$\log\left(\frac{a(n+j)}{a(n)}\right) = A(n)j - B(n)j^2 + o\left(\delta(n)^2\right),$$

where A(n) > 0 and $0 < B(n) \rightarrow 0$.

General Phenomenon

General Theorem

Definition

If a(n) has appropriate growth, then the **renormalized Jensen polynomials** are defined by

$$\widehat{J}_{a}^{d,n}(X) := \frac{2^{d}}{\delta(n)^{d} \cdot a(n)} \cdot J_{a}^{d,n}\left(\frac{\delta(n)X - 1}{E(n)}\right)$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

General Phenomenon

General Theorem

Definition

If a(n) has appropriate growth, then the **renormalized Jensen polynomials** are defined by

$$\widehat{J}_{a}^{d,n}(X) := \frac{2^{d}}{\delta(n)^{d} \cdot a(n)} \cdot J_{a}^{d,n}\left(\frac{\delta(n)X - 1}{E(n)}\right)$$

General Theorem (Griffin, O, Rolen, Zagier)

Suppose that a(n) has appropriate growth.

General Phenomenon

General Theorem

Definition

If a(n) has appropriate growth, then the **renormalized Jensen polynomials** are defined by

$$\widehat{J}_{a}^{d,n}(X) := \frac{2^{d}}{\delta(n)^{d} \cdot a(n)} \cdot J_{a}^{d,n}\left(\frac{\delta(n)X - 1}{E(n)}\right)$$

General Theorem (Griffin, O, Rolen, Zagier)

Suppose that a(n) has appropriate growth. For each degree $d \ge 1$ we have

$$\lim_{n\to+\infty}\widehat{J}_a^{d,n}(X)=H_d(X).$$

General Phenomenon

General Theorem

Definition

If a(n) has appropriate growth, then the **renormalized Jensen** polynomials are defined by

$$\widehat{J}_{a}^{d,n}(X) := \frac{2^{d}}{\delta(n)^{d} \cdot a(n)} \cdot J_{a}^{d,n}\left(\frac{\delta(n)X - 1}{E(n)}\right)$$

General Theorem (Griffin, O, Rolen, Zagier)

Suppose that a(n) has appropriate growth. For each degree $d \ge 1$ we have

$$\lim_{n\to+\infty}\widehat{J}^{d,n}_a(X)=H_d(X).$$

For each d, all but (possibly) finitely many $J_a^{d,n}(X)$ are hyperbolic.

General Phenomenon

Hermite Polynomial Generating Function

Lemma (Generating Function)
We have that

$$e^{2XY-Y^{2}} =: \sum_{d=0}^{\infty} H_{d}(X) \cdot \frac{Y^{d}}{d!}$$

$$= 1 + 2X \cdot Y + (4X^{2} - 2) \cdot \frac{Y^{2}}{2} + (8X^{3} - 12X) \cdot \frac{Y^{3}}{6} + \dots$$

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

General Phenomenon

Hermite Polynomial Generating Function

Lemma (Generating Function)
We have that

$$e^{2XY-Y^{2}} =: \sum_{d=0}^{\infty} H_{d}(X) \cdot \frac{Y^{d}}{d!}$$

$$= 1 + 2X \cdot Y + (4X^{2} - 2) \cdot \frac{Y^{2}}{2} + (8X^{3} - 12X) \cdot \frac{Y^{3}}{6} + \dots$$

Remark

The rough idea of the proof is to show for large fixed n that

$$\sum_{d=0}^{\infty} \widehat{J}_{a}^{d,n}(X) \cdot \frac{Y^{d}}{d!} \approx e^{2XY - Y^{2}}$$

Jensen-Pólya Program for the Riemann Hypothesis and Related Problems General Phenomenon

Proof of the General Thm

• Fix *n*. The generating function for $J_a^{d,n}(X)$ for all *d* is

$$\mathcal{J}_a(n;X,Y) := \sum_{d \geq 0} \sum_{j=0}^d {d \choose j} rac{a(n+j)}{a(n)} \cdot X^j \cdot rac{Y^d}{d!}.$$

Jensen-Pólya Program for the Riemann Hypothesis and Related Problems General Phenomenon

Proof of the General Thm

• Fix *n*. The generating function for $J_a^{d,n}(X)$ for all *d* is

$$\mathcal{J}_a(n;X,Y) := \sum_{d\geq 0} \sum_{j=0}^d \ igg(igg) rac{a(n+j)}{a(n)} \cdot X^j \cdot rac{Y^d}{d!}.$$

• Therefore, it suffices to prove

$$\lim_{n \to +\infty} \mathcal{J}_a(n; E(n)^{-1} \left(\delta(n) X - 1 \right), 2Y \delta(n)^{-1}) = e^{2XY - Y^2}$$

• We want a "master gen fnc" for all $\mathcal{J}_{a,n}(X, Y)$ using

$$\frac{a(n+j)}{a(n)} = E(n)^j \cdot e^{-\delta(n)^2(j^2/4 + C(j;n))}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• We want a "master gen fnc" for all $\mathcal{J}_{a,n}(X,Y)$ using

$$\frac{a(n+j)}{a(n)} = E(n)^j \cdot e^{-\delta(n)^2(j^2/4 + C(j;n))}.$$

(日) (日) (日) (日) (日) (日) (日) (日)

We know that $C(j; n) = o(\delta(n)^2)$ for fixed j as $n \to +\infty$.

• We want a "master gen fnc" for all $\mathcal{J}_{a,n}(X,Y)$ using

$$\frac{a(n+j)}{a(n)} = E(n)^j \cdot e^{-\delta(n)^2(j^2/4 + C(j;n))}.$$

We know that $C(j; n) = o(\delta(n)^2)$ for fixed j as $n \to +\infty$.

• Summing in j and letting C(j) := C(j; n) gives "master gen fcn"

$$egin{aligned} \mathcal{J}_a(n;X,Y) &= \sum_{d\geq 0} \sum_{j=0}^d e^{-rac{\delta^2 j^2}{4} + C(j)} \cdot rac{(EXY)^j}{j!} \cdot rac{Y^{d-j}}{(d-j)!} \ &= e^Y \sum_{j\geq 0} \ e^{-rac{\delta^2 j^2}{4} + C(j)} \cdot rac{(EXY)^j}{j!}. \end{aligned}$$

• Using the definition of E and δ , one gets

$$egin{aligned} \mathcal{J}_a(n; E^{-1}\left(\delta X - 1
ight), 2Y\delta^{-1}) &= \exp(2\delta^{-1}Y)\sum_{j\geq 0}e^{-rac{\delta^2 j^2}{4} + C(j)} \cdot rac{(E\cdot E^{-1}\left(\delta X - 1
ight))^j\left(2\delta^{-1}Y
ight)^j}{j!} \ &= \exp(2\delta^{-1}Y)\sum_{j\geq 0}e^{-rac{\delta^2 j^2}{4} + C(j)} \cdot rac{(2\delta^{-1}\left(\delta X - 1
ight)Y)^j}{j!}. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Using the definition of E and δ , one gets

$$egin{aligned} \mathcal{J}_a(n;E^{-1}\left(\delta X-1
ight),2Y\delta^{-1}
ight)&=\exp(2\delta^{-1}Y)\sum_{j\geq 0}e^{-rac{\delta^2j^2}{4}+C(j)}\cdotrac{\left(E\cdot E^{-1}\left(\delta X-1
ight)
ight)^j\left(2\delta^{-1}Y
ight)^j}{j!}\ &=\exp(2\delta^{-1}Y)\sum_{j\geq 0}e^{-rac{\delta^2j^2}{4}+C(j)}\cdotrac{\left(2\delta^{-1}\left(\delta X-1
ight)Y
ight)^j}{j!}. \end{aligned}$$

• Binomial Thm gives

$$\mathcal{J}_{a}(n; E^{-1}(\delta X - 1), 2Y\delta^{-1}) = \exp(2\delta^{-1}Y) \sum_{h,\ell \ge 0} e^{-\frac{(\ell+h)^{2}\delta^{2}}{4} + C(\ell+h)} \cdot \frac{(2XY)^{h}}{h!} \cdot \frac{(-2\delta^{-1}Y)^{\ell}}{\ell!}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Proof of the General Thm Continued

• In our limit, the relevant part of the red factor is

$$e^{-\frac{(\ell+h)^2\delta^2}{4} + C(\ell+h)} = \sum_{m\geq 0} \left(\frac{-\delta^2}{4}\right)^m \frac{(\ell+h+o(1))^{2m}}{m!}$$
$$= \sum_{m\geq 0} \sum_{0\leq a\leq 2m} \left(\frac{-\delta^2}{4}\right)^m \binom{2m}{a} \frac{\ell^a (h+o(1))^{2m-a}}{m!}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof of the General Thm Continued

• In our limit, the relevant part of the red factor is

$$e^{-\frac{(\ell+h)^2\delta^2}{4} + C(\ell+h)} = \sum_{m \ge 0} \left(\frac{-\delta^2}{4}\right)^m \frac{(\ell+h+o(1))^{2m}}{m!}$$
$$= \sum_{m \ge 0} \sum_{0 \le a \le 2m} \left(\frac{-\delta^2}{4}\right)^m \binom{2m}{a} \frac{\ell^a (h+o(1))^{2m-a}}{m!}$$

• Insert this complicated formula for ℓ^a in the red factor

$$\ell^a = \sum_{b=0}^a \sum_{c=0}^b \binom{\ell}{b} \binom{b}{c} c^a (-1)^{b-c}.$$

Jensen-Pólya Program for the Riemann Hypothesis and Related Problems General Phenomenon

Proof of the General Thm Continued

• The red factor becomes

$$e^{-\frac{(\ell+h)^2\delta^2}{4} + C(\ell+h)} = \sum_{\substack{m,a,b,c \ge 0\\ 2m \ge a \ge b \ge c}} \left(\frac{-\delta^2}{4}\right)^m \binom{2m}{a} \frac{(h+o(1))^{2m-a}}{m!} \binom{\ell}{b} \binom{b}{c} c^a (-1)^{b-c}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Jensen-Pólya Program for the Riemann Hypothesis and Related Problems General Phenomenon

Proof of the General Thm Continued

• The red factor becomes

$$e^{-\frac{(\ell+h)^2\delta^2}{4} + C(\ell+h)} = \sum_{\substack{m,a,b,c \ge 0\\ 2m \ge a \ge b \ge c}} \left(\frac{-\delta^2}{4}\right)^m \binom{2m}{a} \frac{(h+o(1))^{2m-a}}{m!} \binom{\ell}{b} \binom{b}{c} c^a (-1)^{b-c}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Using this gives miracle #1.

• The red factor becomes

$$e^{-\frac{(\ell+h)^2\delta^2}{4} + C(\ell+h)} = \sum_{\substack{m,a,b,c \ge 0\\ 2m \ge a \ge b \ge c}} \left(\frac{-\delta^2}{4}\right)^m \binom{2m}{a} \frac{(h+o(1))^{2m-a}}{m!} \binom{\ell}{b} \binom{b}{c} c^a (-1)^{b-c}.$$

• Using this gives miracle #1.

$$\begin{aligned} \mathcal{J}_{a}(n; E^{-1}(\delta X - 1), 2Y\delta^{-1}) &= \exp(2\delta^{-1}Y) \sum_{\substack{h, m \ge 0\\ 0 \le \ell \le N\\ a, b, c \ge 0\\ 2m \ge a \ge b \ge c}} \left(\frac{-\delta^{2}}{4}\right)^{m} {\binom{2m}{a}} \frac{(h + o(1))^{2m - a}}{m!c!(b - c)!} c^{a}(-1)^{b - c} \frac{(2XY)^{h}}{h!} \frac{(-2\delta^{-1}Y)^{\ell}}{(\ell - b)!} \\ &= \sum_{\substack{h, m \ge 0\\ a, b, c \ge 0\\ 2m \ge a \ge b \ge c}} \left(\frac{-\delta^{2}}{4}\right)^{m} {\binom{2m}{a}} \frac{(h + o(1))^{2m - a}}{m!c!(b - c)!} c^{a}(-1)^{b - c} \frac{(2XY)^{h}}{h!} (-2\delta^{-1}Y)^{b} + O(Y^{N}). \end{aligned}$$

Proof of the General Thm Continued

• As $n \to +\infty$, most of the terms **vanish!** This is miracle #2.

• As $n \to +\infty$, most of the terms **vanish!** This is miracle #2.

• Then we obtain miracles #3 and #4.

- As $n \to +\infty$, most of the terms **vanish!** This is miracle #2.
- Then we obtain miracles #3 and #4.

•

$$\begin{aligned} \mathcal{J}_{a}(n; E^{-1}(\delta X - 1), 2Y\delta^{-1}) &\approx \sum_{\substack{h, m \ge 0\\ 0 \le c \le 2m}} \left(\frac{-\delta^{2}}{4}\right)^{m} \frac{c^{2m}(-1)^{2m-c}}{m!c!(2m-c)!} \frac{(2XY)^{h}}{h!} \left(-2\delta^{-1}Y\right)^{2m} \\ &= \exp(2XY) \sum_{\substack{m \ge 0\\ 0 \le c \le 2m}} \frac{c^{2m}(-1)^{m-c}}{m!c!(2m-c)!} \cdot Y^{2m} + O(Y^{N}) \end{aligned}$$

- As $n \to +\infty$, most of the terms **vanish!** This is miracle #2.
- Then we obtain miracles #3 and #4.

$$\begin{aligned} \mathcal{J}_{a}(n; E^{-1}(\delta X - 1), 2Y\delta^{-1}) &\approx \sum_{\substack{h, m \ge 0\\0 \le c \le 2m}} \left(\frac{-\delta^{2}}{4}\right)^{m} \frac{c^{2m}(-1)^{2m-c}}{m!c!(2m-c)!} \frac{(2XY)^{h}}{h!} \left(-2\delta^{-1}Y\right)^{2m} \\ &= \exp(2XY) \sum_{\substack{m \ge 0\\0 \le c \le 2m}} \frac{c^{2m}(-1)^{m-c}}{m!c!(2m-c)!} \cdot Y^{2m} + O(Y^{N}) \end{aligned}$$

 \bullet Miracle #5 is the following complicated formula

$$\sum_{0 \le c \le 2m} \frac{c^{2m} (-1)^c}{(2m)!} \binom{2m}{c} = 1.$$

Proof of the General Thm Continued

• Putting this together gives

$$\lim_{n \to +\infty} \mathcal{J}_a(n; E^{-1}(\delta X - 1), 2Y\delta^{-1}) = \exp(2XY) \sum_{m \ge 0} \frac{(-Y^2)^m}{m!} + O(Y^N)$$
$$= \exp(2XY - Y^2) + O(Y^N).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof of the General Thm Continued

• Putting this together gives

$$\lim_{n \to +\infty} \mathcal{J}_a(n; E^{-1}(\delta X - 1), 2Y\delta^{-1}) = \exp(2XY) \sum_{m \ge 0} \frac{(-Y^2)^m}{m!} + O(Y^N)$$
$$= \exp(2XY - Y^2) + O(Y^N).$$

• Letting $N \to +\infty$ gives the Hermite poly gen fcn

$$\lim_{n \to +\infty} \mathcal{J}_a(n; E(n)^{-1} \left(\delta(n) X - 1 \right), 2Y \delta(n)^{-1}) = e^{2XY - Y^2}$$

Proof of the General Thm Continued

• Putting this together gives

$$\lim_{n \to +\infty} \mathcal{J}_a(n; E^{-1}(\delta X - 1), 2Y\delta^{-1}) = \exp(2XY) \sum_{m \ge 0} \frac{(-Y^2)^m}{m!} + O(Y^N)$$
$$= \exp(2XY - Y^2) + O(Y^N).$$

• Letting $N \to +\infty$ gives the Hermite poly gen fcn

$$\lim_{n \to +\infty} \mathcal{J}_a(n; E(n)^{-1} \left(\delta(n) X - 1 \right), 2Y \delta(n)^{-1}) = e^{2XY - Y^2}.$$

• Hyperbolicity follows from facts about Hermite polynomials. \Box

Jensen-Pólya Program for the Riemann Hypothesis and Related Problems

General Phenomenon

General Theorem

General Theorem (Griffin, O, Rolen, Zagier)

Suppose that a(n) has appropriate growth. For each degree $d \ge 1$ we have

$$\lim_{n\to+\infty}\widehat{J}_a^{d,n}(X)=H_d(X).$$

For each d, all but (possibly) finitely many $J_a^{d,n}(X)$ are hyperbolic.

Partitions

Definition

A partition is any nonincreasing sequence of integers.

p(n) := #partitions of size n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Partitions

Definition

A partition is any nonincreasing sequence of integers.

p(n) := #partitions of size n.

Example

We have that p(4) = 5 because the partitions of 4 are

 $4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1.$

Partition Jensen Polynomials

Example

The roots of the quadratic $J_p^{2,n}(X)$ are

$$\frac{-p(n+1) \pm \sqrt{p(n+1)^2 - p(n)p(n+2)}}{p(n+2)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

It is **hyperbolic** if and only if $p(n+1)^2 > p(n)p(n+2)$.

Partition Jensen Polynomials

Example

The roots of the quadratic $J_p^{2,n}(X)$ are

$$\frac{-p(n+1) \pm \sqrt{p(n+1)^2 - p(n)p(n+2)}}{p(n+2)}$$

It is **hyperbolic** if and only if $p(n+1)^2 > p(n)p(n+2)$.

Theorem (DeSalvo and Pak (2013)) If $n \ge 25$, then $J_p^{2,n}(X)$ is hyperbolic.

Chen's Conjecture

Theorem (Chen, Jia, Wang (2017)) If $n \ge 94$, then $J_P^{3,n}(X)$ is hyperbolic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Chen's Conjecture

Theorem (Chen, Jia, Wang (2017)) If $n \ge 94$, then $J_p^{3,n}(X)$ is hyperbolic.

Conjecture (Chen)

There is an N(d) such that $J_p^{d,n}(X)$ is hyperbolic when $n \ge N(d)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Chen's Conjecture

Theorem (Chen, Jia, Wang (2017)) If $n \ge 94$, then $J_p^{3,n}(X)$ is hyperbolic.

Conjecture (Chen) There is an N(d) such that $J_p^{d,n}(X)$ is hyperbolic when $n \ge N(d)$.

TABLE 1. Conjectured minimal values of N(d)

d	1	2	3	4	5	6	7	8	9
N(d)	1	25	94	206	381	610	908	1269	1701

Theorem 2 (Griffin, O, Rolen, Zagier)

Chen's Conjecture is true.

Theorem 2 (Griffin, O, Rolen, Zagier)

Chen's Conjecture is true.

Remarks

The proof of Theorem 2 can be refined to prove the minimality of the claimed N(d) case-by-case (Larson, Wagner).

Theorem 2 (Griffin, O, Rolen, Zagier)

Chen's Conjecture is true.

Remarks

The proof of Theorem 2 can be refined to prove the minimality of the claimed N(d) case-by-case (Larson, Wagner).

2 This is a consequence of the **General Theorem**.

Modular forms

Definition

A weight k weakly holomorphic modular form is a function f on \mathbb{H} satisfying:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modular forms

Definition

A weight k weakly holomorphic modular form is a function f on \mathbb{H} satisfying:

1 For all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ we have

$$f\left(rac{a au+b}{c au+d}
ight)=(c au+d)^kf(au).$$

Modular forms

Definition

A weight k weakly holomorphic modular form is a function f on \mathbb{H} satisfying:

1 For all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ we have

$$f\left(rac{a au+b}{c au+d}
ight)=(c au+d)^kf(au).$$

2 The poles of f (if any) are at the cusp ∞ .

Modular forms

Definition

A weight k weakly holomorphic modular form is a function f on \mathbb{H} satisfying:

1 For all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ we have

$$f\left(rac{a au+b}{c au+d}
ight)=(c au+d)^kf(au).$$

2 The poles of f (if any) are at the cusp ∞ .

Example (Partition Generating Function)

We have the weight -1/2 modular form

$$f(\tau)=\sum_{n=0}^{\infty}p(n)e^{2\pi i n\tau-\frac{1}{24}}.$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Jensen polynomials for modular forms

Theorem 3 (Griffin, O, Rolen, Zagier)

Let f be a weakly holomorphic modular form on $SL_2(\mathbb{Z})$ with real coefficients and a pole at $i\infty$. Then for each degree $d \ge 1$

$$\lim_{n\to+\infty}\widehat{J}_{a_f}^{d,n}(X)=H_d(X).$$

For each d, all but (possibly) finitely many $J^{d,n}_{a_f}(X)$ are hyperbolic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Jensen polynomials for modular forms

Theorem 3 (Griffin, O, Rolen, Zagier)

Let f be a weakly holomorphic modular form on $SL_2(\mathbb{Z})$ with real coefficients and a pole at $i\infty$. Then for each degree $d \ge 1$

$$\lim_{n\to+\infty}\widehat{J}_{a_f}^{d,n}(X)=H_d(X).$$

For each d, all but (possibly) finitely many $J_{a_f}^{d,n}(X)$ are hyperbolic.

Remark (Partition Number Example)

For large n we note that

$$J_p^{d,n}(X) \approx p(n+j) \cdot (X+1)^d.$$

Jensen polynomials for modular forms

Theorem 3 (Griffin, O, Rolen, Zagier)

Let f be a weakly holomorphic modular form on $SL_2(\mathbb{Z})$ with real coefficients and a pole at $i\infty$. Then for each degree $d \ge 1$

$$\lim_{n\to+\infty}\widehat{J}_{a_f}^{d,n}(X)=H_d(X).$$

For each d, all but (possibly) finitely many $J^{d,n}_{a_f}(X)$ are hyperbolic.

Remark (Partition Number Example)

For large n we note that

$$J_p^{d,n}(X) \approx p(n+j) \cdot (X+1)^d.$$

Thm 3 separates these roots using the modified polynomials.

Jensen-Pólya Program for the Riemann Hypothesis and Related Problems Proof in the case of Modular forms

Asymptotics are known for modular forms

A First Example (Hardy-Ramanujan (1918), Rademacher (1937)) If n is a positive integer, then in terms of a Kloosterman sum $A_k(n)$

$$p(n) = 2\pi (24n-1)^{-\frac{3}{4}} \sum_{k=1}^{\infty} \frac{A_k(n)}{k} \cdot I_{\frac{3}{2}} \left(\frac{\pi \sqrt{24n-1}}{6k} \right)$$

where $I_{\frac{3}{2}}(\bullet)$ is the index 3/2 I-Bessel function.

Jensen-Pólya Program for the Riemann Hypothesis and Related Problems Summary

Our Results

General Theorem (Griffin, O, Rolen, Zagier)

If a(n) has appropriate growth, then for each $d \ge 1$ we have

$$\lim_{n\to+\infty}\widehat{J}_a^{d,n}(X)=H_d(X).$$

For each d, all but (possibly) finitely many $J_a^{d,n}(X)$ are hyperbolic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General Theorem (Griffin, O, Rolen, Zagier)

If a(n) has appropriate growth, then for each $d \ge 1$ we have

$$\lim_{n\to+\infty}\widehat{J}_a^{d,n}(X)=H_d(X).$$

For each d, all but (possibly) finitely many $J_a^{d,n}(X)$ are hyperbolic.

Remarks

This theorem applies to:

Jensen-Pólya criterion for RH for every degree.

General Theorem (Griffin, O, Rolen, Zagier)

If a(n) has appropriate growth, then for each $d \ge 1$ we have

$$\lim_{n\to+\infty}\widehat{J}_a^{d,n}(X)=H_d(X).$$

For each d, all but (possibly) finitely many $J_a^{d,n}(X)$ are hyperbolic.

Remarks

This theorem applies to:

- Jensen-Pólya criterion for RH for every degree.
- **2** Proves the **derivative aspect** GUE model for Riemann's $\Xi(x)$.

General Theorem (Griffin, O, Rolen, Zagier)

If a(n) has appropriate growth, then for each $d \ge 1$ we have

$$\lim_{n\to+\infty}\widehat{J}_a^{d,n}(X)=H_d(X).$$

For each d, all but (possibly) finitely many $J_a^{d,n}(X)$ are hyperbolic.

Remarks

This theorem applies to:

- Jensen-Pólya criterion for RH for every degree.
- **2** Proves the **derivative aspect** GUE model for Riemann's $\Xi(x)$.
- **③** Coeffs of suitable modular forms (e.g. Chen's Conjecture).

General Theorem (Griffin, O, Rolen, Zagier)

If a(n) has appropriate growth, then for each $d \ge 1$ we have

$$\lim_{n\to+\infty}\widehat{J}_a^{d,n}(X)=H_d(X).$$

For each d, all but (possibly) finitely many $J_a^{d,n}(X)$ are hyperbolic.

Remarks

This theorem applies to:

- Jensen-Pólya criterion for RH for every degree.
- **2** Proves the **derivative aspect** GUE model for Riemann's $\Xi(x)$.
- Source Coeffs of suitable modular forms (e.g. Chen's Conjecture).
- **4** Any real sequence with suitable asymptotics.