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ReformulaCon of General Relativity in Accordance 
with Mach’s Principle 

FEZ.I G~RSEY 

It is argued that Einstein’s Theory of General Relativity as it stands incol,~ 
porates Mach’s Principle. The boundary conditions for Machian solutions are 
stated in a coordinate sevstem in which the cosmological hackground is deserihed t)y 
:i c~~nformally flat metric. The metric tensor g pS is then written as a product of thcx 
scal:+r density qz and a tensor density yfiV with unit, det,erminant. In the coordinate 
system that has heen sn chosen q describes the cosmological structure, whilst -,UV 
refers to gravitational phenomena. This hecomes clear when Einstein’s fund~l- 
mental ecluations are rewritten in terms of p and -fpV Then K+ is seen to pIa>- the 
role of the gravita&nal constant instead of x in the weak field approximation, The 
(quantity hp-l can he expressed in terms of the radius and Ule total mass of i 11~1 
universe and the sign of the forces hetween inhomogeneities of the metric is deter 
mined hy the requirements of Mach’s principle. The forces whi(*h derive from p :LW 
found to be repulsive for the cosmological background, leading to the expansion 
of the universe, while attractive gravitational forces arise from the deviations 
of ),,” from the Minkowski metric. L’arious statements associated with J~:IvII’s 
f’rin<-ipl~~ are discussed in the light of this reformulation of l<:instein’s Theorem. 

I. IiYTI~Ol~~C’TIo~ 

The Mach-Einstein doctrine, which has come to be known as 31ach’s principle, 
holds that the basic inertial frame is defined by distant bodies (Mach’s fixed 
stars in the original formulation, now to be understood as the galaxies). Accord- 
ing to this view, all inertial effects arise as a consequence of accelerations relatives 
to the system of distant galaxies. In particular, inertia of matter is due ent,irely 
t,o the mutual action of matter. It has been sugge&ed by Einstein that such a 
mutual action arises from gravitational forces. Then, inertial forces on a body 
would reduce to gravitational forces exerted by galaxies when the body and the> 
galaxies are in relative accelerated motion. Since, according to this point of v&v, 
the need for distinguishing between inertial and gravitational forces disappears, 
the weaker principle of equivalence follows from the stronger AIach-Einstein 
principle. 

The extent to which Einstein’s theory of gravitation, based on t,he principle of 
equivalence, incorporates Mach’s principle in its strong form is, to this day, not 
well known, although it has been extensively discussed by many authors, notably 
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by Einstein (I,.%‘), Thirring and Lense (8), and more recently by Honl (J), I’irani 
(5), Bondi (6), Tangherlini (?‘), Brans (8), and Wheeler (9) among others. The 
weak field solutions do reflect Mach’s principle in a weak form, showing a basic 
similarity between inertial forces and gravitational forces generated by the ac- 
celeration of distant bodies, without however leading to the complete identifica- 
tion of inertial with gravitational effects. The weak field theory further allows 
solutions for gravitational fields of massive bodies with arbitrary values of the 
mass in an otherwise empty space. From the point of view of the Mach-Einstein 
doctrine these are objectionable features of the solutions. On the hand, when other 
masses are piled in the neighborhood of a test body, Einstein (z?) has shown that 
the inertial mass of the latter increases, so that inertia must be due, at least in 
part, to the existence of other massive bodies in the universe. The work of Thirring 
and Lense (S) has also demonstrated that inertial forces due to rotation with 
respect to an inertial frame partly originate in the gravitational forces exerted 
on the test body by rotating masses in the universe. These examples show that, as 
far as Mach’s principle is concerned, Einstein’s theory offers possibilities that do 
not exist in the Newtonian theory. 

Lately, various authors have attempted to construct new theories of gravita- 
tion designed to incorporate explicitly Mach’s principle in its strong form. In this 
category we may cite Sciama’s (10,ll) ingenious vector theory, which is more of 
an illustrative model than a theory of gravitation, since it leads to repulsive forces. 
More realistic theories have been proposed by Hoyle (1,$?,13) and Brans and Dicke 
(14). All such theories introduce nongeometrical entities such as new scalar or 
vector fields superimposed on the metric tensor, thereby destroying the direct 
relation between the curvature and the distribution of matter that is an essential 
feature of Einstein’s purely geometrical theory of gravitation. Furthermore, a 
certain degree of arbitrariness inevitably accompanies the introduction of such 
new fields since the form and the strength of their coupling to the metric tensor 
are not determined by the principles of General Relativity. 

Our aim in this paper is to investigate further Einstein’s Theory in the light of 
Mach’s principle without restricting ourselves to the weak field approximation. 
We propose to exhibit new solutions satisfying Mach’s principle in its strong form. 
These Machian solutions obey certain boundary conditions at spatial infinity, 
the precise definition of which is one of our main tasks. 

In order to find Machian solutions, we proceed in three steps. Firstly, since 
our purpose is to examine Mach’s principle within the framework of General 
Relativity, we have to find a way of separating local effects from the general 
cosmological structure due to the distribution of distant bodies, because all 
statements related to *Mach’s principle involve such a separation. Secondly, the 
boundary conditions being only meaningful in a definite coordinate system, we 
must be able to introduce privileged coordinate frames determined by the over- 
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all cosmological structure that has been separated in the first step. These are the 
inertial frames that, according to Mach, are determined, to within a kinematical 
group, by the over-all distribution of matter. Thirdly, to preserve the general 
covariance of the theory, we have to show that Machian boundary conditions 
can also be generalized to an arbitrary coordinate system, that is, t80 noninertial 
frames. 

The key to the success of this program lies in the observed simplicity of thcl 
universe at large. A separation of the cosmological background from the local 
irregularities of the geometry of space-time is made possible by the remarkable 
uniformity in the distribution of galaxies, an observational fact expressed by th(a 
cosmological principle. Roughly, the metric can then be regarded as havilq a 
part C,,” which describes a geometry which is conformally flat and spat,iaJly 
homogeneous, and another part referring to deviations from this uniform strut- 
ture. The inertial frame can then be defined as one in which C,‘MV takes a conformal 
form, so that light in this syst,em travels on a straight line with velocity C. Thcx 
bomidary conditions for the metric will now require the g,,” to t’end asymptotically 
t’o a conformal metric characteristic of a uniform cosmological structure> it1 t,hp 
inertial frame. lpinally, in a geueral coordinate system, gPV should tend to Cp,, whkh 
describe t,he cosmological background in a noninertial frame. This last poijlt 
brings us to a re-examination of the meaning of general coordinate ~ra~wfonx- 
tiolls iu General Relativity. Essentially the point we want t80 make is that, &II 
acceleratiojl, namely, a transformation that takes t#he observer from all itlcrtial 
to a uoninertial frame, should be interpreted as a transformaGon which distorts 
t,he uniform and isotropic aspect of the cosmological background. The redist,rit)~~- 
tiou of cosmological matter implied by such a transformaGon will then result it) 
additional gravitational effects which manifest themselves as inertial forces. 
Einsteikl’s statement that physical laws should be valid in any nouillertial S~S- 
tem will be read, from a Alachian standpoint as : “The physical laws should 
continue t,o hold iti any cosmological backgromid”. The foregoing disrussioli forms 
the basis of Section II. 

Sow comes a crucial observaCon. Because the cosmological structural is ~~~1. 
formally flat,, we are led to the following boundary condition at spatial i~~fi~Ct,y 
in t#he inert,ial system, 

gpv --+ &Iv [ 1.1 ) 

where the fu]~cGon A belongs to the cosmological line element,. It also follo\vs that 

where 
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g being as usual the determinant of the metric tensor. Thus we must also have 

with the definition 

Therefore, as long as we work in the inertial system all the information about 
the cosmological structure is contained in the determinant of the metric and the 
quantities ypv describe local irregularities of structure. This suggests that, to 
give mathematical expression to the separation between local and global effects 
we can begin by re-expressing Einstein’s field equations and the geodesic equa- 
tion of motion for a test particle in terms of the quantities q and -y,,” . We note 
that p is not a true scalar and 7fiv not a true tensor but rather scalar and tensor 
densities, respectively, with appropriate weights. It turns out that the same fields 
also permit a linearization of the field equations even in the absence of the weak 
field approximation. Hence it is important that we reformulate General Rela- 
tivity in terms of these quantities. This is done in Section III. It also appears that 
the function p shows up as an inertial coefficient in the equation of motion. This 
is directly relevant to Mach’s principle as p, not being a true scalar, will change 
when masses in the universe are redistributed by a coordinate transformation. 
Thus, the inertia of a test particle will depend on the cosmological structure. 
It is shown later in the paper that in virtue of our boundary conditions, the 
inertial mass of a particle in an otherwise empty universe vanishes. 

Section IV is devoted to the study of the properties of a special cosmological 
background uniform in space and time in agreement with the Perfect Cosmo- 
logical Principle. This is known to be a de Sitter Universe. It is a special con- 
formally flat universe with metric of the form ( 1.1) with A = @, @ being a definite 
function of the Lorentz invariant length. It is shown that, although the de Sitter 
universe cannot contain stable matter, it may be interpreted as being associate 
with a uniform distribution of mass scintillations, that is, unstable masses that 
give use to a 8’4’(~) singularity in the equation determining the metric. In the 
case of a spatially closed de Sitter world a total mass may then be defined. The 
metric is expressed in terms of the radius of curvature and the total mass in that 
case, all the mass coming from mass scintillations. 

In Section V we turn to the discussion of a conformally flat cosmological back- 
ground which satisfies the more restricted form of the cosmological principle. In 
the same section the possibility of a scalar theory of gravitation compatible with 
Mach’s principle is investigated. This question has already been considered by 
various authors (15,16, I?‘), without, however, the restriction imposed by Mach’s 
principle. The problem is reduced to that of formulating a gravitational theory 



in conformally flat space-time, since in this case, going to the inertial system, we 
dispose only of one function 

(zA--q I I .G ) 

t,o describe t’he deviations of the metric from the spatially homogeneous Arw- 
ture characterized by A. If { is the field due to an inhomogeneity of the geomet#ry 
( such as a massive body embedded in an otherwise homogeneous universe 1, 
3Iach’s boundary condition ( 1.2) implies that < -+ 0 at spatial infinity. We show 
by studying the equation of motion that a test particle is 7.epeZZec.i hy the massiw 
body whatfever the sign of the original constant in Einstein’s field equations. ‘i’hi~ 
shows that there cannot be attractive forces between massive hodies it1 a toll- 
formally flat space-time. Turning the argument arowld, we conclude that 
repulsion between galaxies strengthens our original model of a universe \vhich is 
roughly conformally flat and in which Mach’s principle is valid. 

111 Section VI we turn to the actual space-time structure where -yPa, #q,,” , 
so t,hat w are no longer in the conformal case. It, is shown t’hat the existetw of 
t,he t#ensor field 

4,” = -r,,v - qpv 1 I.71 

leads to attraction between a test particle and massive body producing the twwt 
field. Thus, a tensor theory of gravitation is necessary to describe local gravit,a- 
tional phenomena in space-time. It is also shown that the solution for ttw field 
of a massive body (like the sun) in presence of a homogeneous universe is it) 
agreementS wit)h Schwarzschild’s solution in isotropic coordinates. I~utther it 
is shown that the effective gravitational constant is proportional to the ratio 
of the effective radius of the universe to its tot,al mass as in Sciama’s model 
(9’) and in the theories proposed by #Jordan (181, Dicke ( 29, s?o), aud 13rans 
and Dicke [ 13). In our nonstatic model, the gravit,ational constant is tilso 
found t,o be t’ime dependent as anticipated by Alilne CSf) and Dirac ( ?,j 1. 

Section \?I illustrates how, according to Mach and Einst&, inertial forws 
due to acceleration (a uniform acceleration in our example ) may be intwpwted 
as the gravitational force exerted by a cosmological background which appears 
anisotropic and accelerated with the opposit,e acceleration. 

Finally, in Section VIII we make a brief comparison b(~t~weell tllis thca()ry, 
entirely based on General Relativity, and other theories it1 which Alach’s pritlcipl(k 
appears at the cost of modifying Einstein’s original t’heory. It is not,ed that ~+n 
Einstein’s theory is reformulated by means of the quantit,ies p alid y,,” it tak(>s 
a form reminiscent of a variety of new field w~uations proposed by IIo+, , 12 ) ~ 
Yilmaz (23 ), *Jordan (18), and others, and is strongly similar to the t]wory of 
Brans and Dicke (fd). The important difference is that t,he field q is ilot :i tlf$Jv 
scalar field superimposed on the metric but, it is a scalar dplisit,.y relate,1 to ttj(b 
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metric tensor. In the inertial frame Einstein’s theory is Lorents invariant and 
hence can also be compared with the reformulations of the gravitational equa- 
tions in flat space-time in the language of conventional field theory due to Gupta 
(24), Thirring (1 ‘7’), and Feynman (25). 

We conclude with a brief discussion of some remaining unsolved problems con- 
nected with Mach’s principle. 

II. THE PERFECT COSMOLOGICAL PRINCIPLE AND THE BASIC INERTIAL 
FRAME. BOUNDARY CONDITIONS FOR MACHIAN SOLUTIONS 

Our immediate aim is to define the basic inertial frame in General Relativity 
without which any &Iachian analysis of inertial effects cannot be given a meaning. 
Without concerning ourselves with the details of the space-time structure we 
start from the global system of galaxies in our expanding universe- This 
cosmological background has a simple structure which conforms to two principles. 
The first is the so-called Weyl’s postulate which states that the world-lines of 
galaxies diverge from a point in space-time situated in the finite or infinite past. 
The second is the cosmological principle which expresses the spatial uniformity 
of the universe so that the distribution of the galaxies would look the same to any 
observer situated anywhere at a given time. The cosmological principle implies 
spatial isotropy as well as constancy of curvature throughout space at a definite 
time. 

From the two principles it follows that there exists a preferred system of co- 
ordinat,es (the Robertson-Walker system (26) ) in which the line element takes 
the simple form. 

ds* = cz dt* - R*(t)u’( r) (dx* + dy2 + d,z2) (2.1) 

where 

U(Y) = (1 + +&!Cr2)-1 

and ?C is the curvature of 3-space. 

(2.2) 

It has further been shown by Infeld and Schild (27) that, for most cosmological 
models, it is possible to find a coordinate transformation which throws the line 
element (2.1) into the conformal form 

d? = A2( t, r) (c* dt2 - dx2 - dy* - dz’). (2.3) 

This means that the universe as we observe it must be, on the whole, con- 
formally flat. In other words there exists a frame in which, in addition to the 
cosmological principle and the Weyl postulate being satisfied, we also have light 
rays travelling along straight lines with speed c. Such coordinate systems will 
be called conformal cosmological coordinates. These are still not the inertial 
coordinates we are looking for. In fact, consider a special conformal transforma- 
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tion with a timelike constant acceleration vector. Combining it with a purtl 
Lorentz transformation, we can make the spatial components of the acceleration 
vanish and this transformation (28) which does not destroy the isotropy of t#hc 
cosmological background will preserve the general form (2.3) of the line eiemtxnt,. 
The metric (2.3) therefore does not rule out some types of accelerations aud 
if we start, from an inertial frame, the new one will be noninertial. 

What we need then is a more restrictive form for the cosmological metric whiell 
leaves no room for acceleration transformations. This is provided by Bondi a11d 
Gold’s (29) Perfect Cosmological Principle, according to which the universes ill 
the large is uniform not only in space but also in time, so that all points in space- 
time are equivalent. Since this highly restrictive principle of uniformity has not 
been disproved by observation so far, we shall adopt it for the purpose of t’his 
paper as a rough approximation to the structure of the universe. Such spaces are 
also conformally flat and in conformal coordinates the line element takes the fnrm 

d.s2 = $( T2) ( c2 di2 - d.?? - dly - c@) = &( T2 ) 71P” dxP d.c, t ‘).a 1 4 

where, as usual, x0 = ct and + is the metric of special re1ativit.y with diagonal 
elements ( 1, - I, - 1, -1 ). 7’ is the square length of the po&ion v&or detintd 
by 

T2 = JLv 22 qp”.r .T zzz c i - /, t ‘I.) 1 -9 

and the fmlction @, characteristic of a homogeneous space-time is given by 

a(2) = @(O)(l- z&Y, t 2.0 1 

where K is real for positive and imaginary for negative spatial curvature. 
Xow the metric (2.4) determiues the coordinate system to within a lo-param- 

eter kinematical group. This is the well-known de Sitter group which includes 
the G-parameter homogeneous Lorentz group as a subgroup and also includes 
four displacements which reduce to space-time translations for K = 0. Sincfl 
observationally K is very small, the group of the metric (2.4) is essentially idell- 
tical with the Poincar6 group which is the group of tjransformation of inclrtial 
frames. 

The Perfect Cosmological Principle which states that the laws of physics arp 
the same for every observer at any place and any time leads us therefore t80 a 
de Sitter structure for the cosmological background and to the invariance of 
physical laws under the de Sitter group which reduces to the group of Special 
Relativity for a negligible curvature. This conclusion is in perfect accordance with 
Fock’s insistence (30, 31) that Special Relativity expresses the uniformit,y of 
space-time. Fock, however, restricts himself to the case K = 0, so that he deals 
with an empty universe. We simply say, from a AIachian standpoint, that Special 
Relativity (in the generalized sense of de Sitter invariance of physical laws) is ;3, 
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consequence of the approximate uniformity in space and time (the Perfect Cos- 
mological Principle) of the cosmological background. 

Having now defined the inertial coordinate system as the one in which the 
cosmological line element takes the limiting form (2.4) we can state the boundary 
conditions for the metric gfiV of the actual space-time in this inertial system. We 
must have asymptotically, 

glm - @2~~2hP” (2.7) 

as in ( 1.1). Introducing the tensor density -ypV with unit determinant by ( 1.5) 
and the scalar density p by (1.3) we can also rewrite the condition (2.7) in the 
forms (1.2) and (1.4). By definition d-g is a scalar density with weight 1, 
so that p is a scalar density of weight $$ and -rpV a tensor density of weight ->i. 
Expressing deviations of the metric gpV from the de Sitter metric by means of 
,$ and &, defined by (1.6) and (1.7) respectively, we see that the Lorentz scalar 
t and the Lorentz tensor hpv obey the boundary conditions 

and 

lim hpv = 0 
r-cc 

in the inertial frame. 
Furthermore because @J --+ 0 for large r, when i is kept constant, we also have, 

in the inertial frame, 

lim gpV = 0. (2.10) 
r+uz 

This last condition was called “degeneration of the metric” by Einstein (1) 
who made an attempt to use it in connection with Mach’s principle. However, 
the special frame in which this degeneration occurs was not specified by Einstein 
so that it remained as a vague statement which seemed to lead to contradictions. 
The condition (2.10) is obviously not satisfied in the Robertson-Walker system, 
nor is it in a system for which d-g = 1, this latter being the one favored by 
Einstein. 

In a general noninertial frame, the conformally flat universe is no longer de- 
scribed by one function A, but by a metric tensor CfiV which satisfies the conditions 
of conformal flatness. Then, instead of (2.3) we must have the asymptotic metric 

ds’ = Cp,s dti dx’ (2.11) 

where C,,” satisfies the condition 
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which is the condition for the space to be conformally flat (32). Here the left’ hand 
side of (2.12) is the curvature tensor constructed out of the metric CPU Thus 
(2.12) is the covariant condition that g,,” must satisfy asymptotically if t,he 
cosmological structure is conformal. 

On the other hand, if we regard the universe as having constant curvat’ure as 
a first approximation, then it is a special conformal space-time, that sati&s t’h<> 
more stringent covariant condition 

R;“h = h( 6”TPA - &Tpv~, I 2. I:3 ) 

where kc, is the curvature of the de Sitter universe. Then (2.12) is automatically 
sat,isfied since, as a consequence of (2.13), we also have 

RK PVC = Rpv = -:3k,,Ctiu . i 2.1-l) 

In virtue of the relation 

R = - 12k,, 

we can also write (2.13) in the form 

RK blvA = - l$zR( fLKCp~ - r&T.+“). I 2.16 ) 

For weak gravitBational fields we can now assume that the deviations of the 
curvature tensor from the form (2.16) are small. This is a completely covariam 
condition which replaces (2.7). 

In a noninertial frame the de Sitter cosmological structure will be describrcl 
by a metric CPP which satisfies (2.16) but not the cosmological postulates. Th(> 
latter are however satisfied in special frames, namely, the inertial frames for 
which C,,” takes the form 

C#” = &&&“. fl?.liJ 

These are the frames in which light propagates along straight lines with velocity 
c. Furthermore in these inertial coordinates the universe looks isotropic while it. 
will generally appear anisotropic in an accelerated system. 

In a conformally flat universe where the cosmological principle of spatial 
homogeneity and Weyl’s postulate are valid we can find a coordinate system, 
which we call the Infeld-Schild system (%‘), in which the cosmological liw 
element takes the form (2.3) with 

instead of the form (2.4) associat#ed with the Perfect Cosmological Principle. 
Then the Meld-Schild system will define the inertial frame in the limit, in which 
the function F may be approximated by a constant (t’he de Sitter limit 1. 
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III. SEPARATION OF EINSTEIN’S GRAVITATIONAL EQUATIONS IN AN 
INERTIAL SYSTEM 

In this section we wish to show how the conformal part and the homogeneous 
de Sitter background of the space-time geometry can be separated in an inertial 
system of coordinates. 

Let the line element be given by 

ds’ = gtiv dP dx’ = &v dx’ dx’, (3.1) 

where g,,” is the metric tensor, P the scalar density defined by (1.3), and yNP the 
tensor density defined by (1.5). By definition d-g is a scalar density of weight 
1. It follows that P and yPV have respectively weights $i and -35. Define C& as 
the Ricci tensor constructed out of -r,,” and @ as the quantity 

6i = y,Q, (3.2) 

where -j’” is defined by 

y = ( -g)l’4gfi” = $gJy (3.3) 

so that we have 

Y%” = 6:. (3.4) 

Then, according to a standard formula of Riemannian geometry (see ref. 32, 
p. 90) we have 

Rpv - +$g,uvR = ci$w - %-~pv@ - 4v-z~(~~~)@vv) - %pho)(&)] 

+ ~P-Y@P& - %Llwl, 
(3.5) 

where the covariant derivative on the right hand side refers to the tensor yPV and 
q CTj is the generalized D’Alembert operator constructed with yPV , so that 

q (#p = cfP,“l;v = w&&wd--YYP”~@~. (3.6) 

Remembering from (1.5) that 

Y = Det //-vNvlj = -1, 

we find 

With the customary definition of RpD as 

RNv = aNav log+g - r;da 10&--~ + r;g% 

Einstein’s covariant equations of gravitation read 

R,,v - $sgFvR = -~??,,,a . 



In Einst’ein’s theory K is positive and proportional to the gravitational const~ant, 
the fact,or of proportionality being 8r/c4. Here we shall not specify K as yet. 
Defining MP” as 

cRp” = y%$~ (3.10,l 

by nwaus of the contravariant densities 7”A defined by (3.4) we find, usiug (:1.5), 

6Lp” - ? &“cii - &‘[(&p)(#p) - ?,&“(d~pj(d~p)] 

+ 2$2[(ap# - 13w”El(&] = -K$$7”ATpA. 
(3.11) 

LSo~v w introduce the tensor density &,” of weight ,s4 through t,he definitioii : 

q,” = &“ATph . (3. t2:1 

The tensor density equation (3.11) takes t,he form 

sip” - J+p”~ = -K~&~” + Lmp”(p j, (:a. 1:3 I 

where 

the indices being raised by means of the tensor density 7”‘. 
The int.roduction of the density C$” can be justified by a straightforward 

c”eueralizat,iou of t’he expression of the energy momentum tcusor for a qvstem of 
ilass points in flat space. In flat space we have c see for example ref. 1: 1, 

where 

du? = qhp d2 112 (3.16,l 

is the liue element in flat space. In the general IGxnannian space with metric 
given by ( 13.1) we introduce the scalar density (1~ of weight, - i 4 defined by 

dT? = yp” d.F dx” (3.17) 

so that we have 

ds = p dT (3.18j 

for t,he scalar line element. Kow, in an inertial system we have -y,,” + TJ,,” asymp- 
totically, SO that we also have 

dr + du. (3.19) 
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The tensor density obtained from (3.15) by the substitutions of dr for du and 
-ih for vpv , mm+, 

(3.20) 

will be a tensor density of weight yi, which asymptotically goes over to the 
Cartesian energy momentum tensor of flat space. This is then the explicit form 
for a system of mass points of the tensor density defined by (3.12). Equations 
(3.13) and (3.14) together with the condition on the determinant (1.5) are 
equivalent to the original Einstein equations (3.9) and form the starting of our 
investigation. 

Contracting Eq. (3.13) we also find 

-CR = -qLa + m”v = ~-‘(-d + 60~~~). (3.21) 

The geodesic equation which describes the motion of a test particle is 

(3.22) 

where I$ is the Christoffel symbol corresponding to the tensor g,,” that appears 
in the metric (3.1). By means of (3.17) and (3.18) the geodesic equation takes 
the well-known form 

(3.23) 

where the Christoffel symbol is constructed with the help of the tensor density 
y,,” . An alternative form is 

(3.24) 

The quantities .$ and htiV introduced by (1.6) and (1.7) are small in an inertial 
system away from sources of gravitational fields. Let us first consider the case 
of vanishing g and hpv . Then, using (2.6), we can write 

p Lz a(2) = @(O)(l - T2/4R2)-l (3.25) 

where R is the radius of curvature of the de Sitter universe. We find for the 
tensor density defined in (3.14) 

In the general case we may put 
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so that, C+ differs little from v,,~ away from gravitational sources and the metric 
t,akes the form 

cl p” = d(&@” (:;.28\ 

in the inertial coordiuate system. 
If G$,’ is the Ricci tensor corresponding to the metric C+ , we obtain, similarl> 

to (3.1:s 1, 

sip” - J~~&“si = -K@-15p” + ml*“(@), ( 3.29 1 

where ,7#V is given by 

$” zz @3g”kl~pA (3.30~) 

and :v&“( a’) takes the limiting value (3.26) when c+ is approximat,ed by v,,” . 
The contracted form of (3.29) is 

-iii = F’(-u~ + 60&). c:3.31 j 

011 the &her hand we have 

cl@? = $“c$$“aJ = (2/aqo)R2)@3, ( :3.:2 ) 

so that in t’he zero approximation (t = 0, hfiV = 0) we have 

;&KS s iIl@ = (2/aqO)f?)d c,3.3:3 ) 

IntBroducing the scalar T through 

T = g’“l’,,” , I :i.:x j 

the conkacted form of (3.30) reads 
T = @-a?- (ii.:&> ) 

so Ulat (3.:G ) takes the form 

$&UT = 2/+2(0)i?. t :<.:<ti ) 

For small deviations from t’he de Sitter metric we may put 

apv = vpv + apv , ( :;.:j7 ) 

where O,PV iti small in an inertial system away from inhomogeneities. WC liav~ 

afiv = CQ/@h t :i.:<s 1 

Then, in the zero approximation (apv = O), the parameters of the de Sitter hack- 
ground are related to the trace of the euergy-momentum tensor by means of 
C 3.36 1. The field c+ is then determined from the equations (3.29). 

We note that the equation of motion (3.23) of a test, particle may also IF 
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rewritten in terms of @ and CYST in the form 

(3.39) 

where 
dT2 = c+ dx’ dx’, 

and the Christoffel symbol refers to the metric Q, . 

IV. THE DE SITTER BACKGROUND 

First we consider the case of a homogeneous universe where the functions 
us” describing the inhomogeneities vanish. For K > 0 we find, from (3.36) 

as the solution of (3.33). If K < 0, we have 

(4.1) 

(4.2) 

In the first case the de Sitter universe has positive spatial curvature for L = 0 
while the second case corresponds to negative curvature. In these solutions the 
radius of curvature R is arbitrary. We now propose to define the total mass of a 
de Sitter universe in the case of positive curvature. In the de Sitter case, we have, 
from (3.21) 

where, in virtue of (3.20), 

On the other hand, for a static distribution of matter we have the Poisson 
equation 

(4.5) 

where V is the Newtonian potential. The total mass of the system is in this case 

A4 = F mi = $ 1 (V’V) d3r. (4.6) 

We see that (4.3), in the inertial system, is the special relativistic generalization 
of (4.5), @ playing the role of a nonstatic Newtonian potential. We may then 



define a total mass enclosed in a de Sitter universe at time f by 

Using ( 3.32 j and (3.36) we find 

so t,hat, in the case of positive curvature 

Carrying ant the integration, we obtain 

01 

which expresses the ratio K/+(O) in terms of the total mass and radius of thtx de 
Sitter universe. 

For the mass density 3 in the de Sit’ter universe we find, from (3.35) 

3 zz fj c Tc$, lJ.lJi 

so that, using (4.12) we find 

This is just the total rest energy of the de Sitter universe divided by itIs total 
volume. 
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Coming now to the case of negative curvature we note that in this case the 
integral on the right hand side of (4.9) diverges and the enclosed mass is infinite. 
A relation like (4.13) connecting the constant K with the mass of the universe no 
longer exists for the spatially open de Sitter world. 

We owe another word of explanation in connection with the statement that 
the de Sitter universe is empty. What is meant by emptiness in the literature is 
the absence of a model of a fluid composed of stable particles to describe the 
properties of the de Sitter universe and generate its metric. This, however, does 
not mean that in such a universe the energy-momentum density of matter 
vanishes identically. From (3.29) and (3.26) we find 

KS/&V = (3/~z(o)Rz)~37JP”. (4.16) 

A distribution of stable matter cannot have an energy-momentum distribution 
given by (4.16). It cannot represent a radiation filled universe either, since 5 # 0. 

It is possible to find a physical interpretation of an energy-momentum tensor 
of the form (4.16) if we think of the curvature induced by a massive particle 
appearing and immediately disappearing at a world point with coordinates .$, , 
that is, at the point with position vector E at time (0 . Such a single event may 
be called a “mass scintillation.” The scalar density @ then satisfies an equation 
of the form 

q af = yP(z - {), (4.17) 

where 7 is a constant. One solution of this inhomogeneous equation is 

It can now be shown that the energy-momentum tensor density corresponding 
to such a mass scintillation is proportional to qPV so that the expression s,,~ given 
by (4.16) may be regarded as arising from a uniform distribution of mass scintil- 
lations. 

The motion of a test particle in the de Sitter universe with positive spatial 
curvature is given by 

or 

(4.19) 

(4.20) 



GEXERAL RELATIVITY -Kill MACH’S PRIXCIPLE 

Neglecting R-’ we find 

01 

For the time interval ( -2R,/c) to 0 we have the positive sign corresponding 
to an expansion with Hubble’s constant 

h = c/R& c 4.23 I 

From (4.19) we see that a(O) is proportional to the inertial mass of the particle. 
When the total mass of the universe decreases, R being kept constant, it follows 
from (4.13) that a(O), and hence the inertia of the particle, decreases too. This 
is in accordance with Mach’s principle as it will be shown in the following sect3olls 
iI1 more detail. 

V. REP~~LSIVE COSMIC FORCES IY COXFORMAL SPACE-TIME. IMI’OSSIBII,IT~~ 
OF A SCALAR THEORY OF (;RAVITz4TIO?J 

In this section we shall treat a space-time model which is conformally flat 
but not homogeneous. It is therefore less simple than the de Sitter case. It does 
not satisfy Bondi and Gold’s Perfect Cosmological Principle but the more re- 
stricted form of the cosmological principle associated with spatial homogeneit,y. 
We start from a de Sitter background due to a uniform spread of mass scintil- 
lations. On this background we superimpose one inhomogeneity, keeping howeve] 
the conformally flat character of the geometry. Let us t’ake the stable mass point 
as the origin of coordinates. The de Sitter background allows us to define an 
inertial system so that we can use the equations of Section III with the condition 

hpv = 0, or -rfiv = TJ,,~ , 

which expresses couformal flatness. We have 

ds2 = $2 ljP” dx@ dxV, 

with 

q? = a@) + <il.). t 5.3 J 

This metric describes a static isotropic field due to the iuhomogeneity at the 
origin. To determine [ we use Eq. (3.21) which takes the form 

q P = q (a + c$) = ‘,dKs. t 5.4) 
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Xow 3 has two parts, one coming from the de Sitter structure given by (3.33) 
and the other from the existence of the stable mass point at the origin. Thus 
we have 

where m is the mass of the inhomogeneity. 
With this value of 3, (5.4) gives the following equation for { 

V*t = -$&.&(r). (5.6) 

Since in the inertial system we require the metric to go over to the de Sitter 
metric away from inhomogeneities we must solve (5.6) with the Machian con- 
dition 

lim .$ = 0. (5.7) T-cc 

Remembering that K is positive, this solution is therefore 

The metric of this universe has then the form 

where dw,2 is the Minkowski line element given by (3.16). 
Let us now discuss the motion of a test particle in this universe. Equation 

(3.23) gives 

Neglecting for the moment the cosmical expansion, and using (4.13), we find 
approximately 

d 
i&i 

(5.11) 

Thus, the test particle will be subject to a repulsive radial force proportional 
to the mass p of the body at the origin, the coefficient of proportionality being 

c = Rc2/7rM(0), (5.12) 

where R is the radius of the de Sitter universe and IIf its total mass at time 
t = 0. 



Tllis is not, a gravitational, but rather an antigravitational force acting t)etJwe~~li 
niassij,c bodies in a conformal space-time. 

Supposing that more masses mi are piled up at points wigs coordinates a! , 
1 hc geometry being kept conformally flat, these various poin& will repel (>:kctl 
oth(br with :X force inversely proportional to the scluare of th(Jir relative dist8alices. 
If wc’ t&l these massive inhomogeneities iI1 a conformal spacetinic :LS tl~(~ 
galaxies w see t’hat we arrive at a pi&me of the universe in which galaxies (lsort 
on eatah otl~r a Coulomb-like repulsive f0rc.e. Thiti is exactly like th(, ~‘(~l~~(*t,ric 
universe” model of Bondi and Lyttleton (JJ). These authors have postulaM 
such a rtq>ulsivc force between galaxies to which, however, thqv ascribe au &ct ric 
origill. Tht>y show that, as a result, one gets a11 expanding universe obcyit~g 
l-Iubbl~~‘s 121~. The repulsive force needed bc&wccn t,wo galaxies ~rr~po~~(ls to a 
charge vswss of the order of IO-” , so that t#he force is of th(, 01&i 

where p is the mass of a galaxy and m,, Gle class ot’ a hydrogen atom. Since, \v(* 
have num~~rically 

f$(& E I()y t .i. l-4 1 

G being tht? gravitational constant, we find 

,f E (;&J, t .i. 1-i i 

so t,hat ww nepds a repulsive force of the order of tJtl(, gravitational forc(b. ‘l’l~i~ 
is (>xa(%ly the repulsion given by our Alachian model provided the constant (’ of 
(5.12 1 is of the order of the gravitational constant. 

Xow colGder our model of a couformal spac(x-titn(b ill wlGcl1 N galax& of 
mass p arta &rated at the positions at at tim(> [ = 0. 

The total mass of the universe is gi\:en by 

SO that Gc sohltioti vanishing at infinity gives 
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or, using (4.13), 

Let us introduce the function 

(5.20) 

assuming that galaxies are spread uniformly within a sphere of radius A. Since 
the total mass of galaxies is NP, we find from potential theory 

for r 5 A, 

(5.21) 

for r 2 A. 

This is a decreasing function of r similar in behavior to the function 
(1 + ,rz/4Rz)-’ which occurs in the first term of (5.19). Thus in the static ap- 
proximation the galaxies contribute to the general curvature and total mass of 
the spatially closed universe. Since the force between these galaxies has been 
shown to be repulsive in a conforma space-time, the radius A characterizing the 
distribution of stable matter will be an increasing function of time. The function 
P in a conformal universe filled with stable matter will then have the form 
P(L, r) instead of the form p(~‘) in the de Sitter universe. 

In the approximation of neglecting the square of the curvature we find that at 
time t = 0, L,Q, is approximated by the following constant 

(5.22) 

where 
M’ = M(0) + Np (5.23) 

is the tota mass of the universe and R’ an average radius of curvature defined 
by (5.22). 

Summing up the discussion in this section, we can state that the Machian 
boundary conditions rule out a gravitational theory based on a scalar field in a 
conformally flat universe. It is known that without Mach’s principle there is no 
a priori reason against a scalar theory of gravitation (17). On the other hand if 
the universe at large is conformally flat, the Machian solutions for the metric 
impose repulsive forces of the order of gravitational forces (antigravitational 
forces) between galaxies that cause the galactic system to expand in accordance 
with Hubble’s law against a de Sitter background. 



\Yc~ have seen in the preceding section that if t,he universe is conformally fiat 
ill l(lw first approximation, as it seems to br observationally, t’hw JIachian 
boundary conditions allow only repulsive forces in this cosmological background. 
.tt, is our purpose to show in this section that attractiw gavit&ional interae&ilb 
are automat)ically introduced if the metric is iiot8 conformally flat,, through I IN- 
“twsorial” part /I,,” of the metric and, further, that tShc strength of this inttbr- 
action is independent of the constant K that appears in &A&t’s fundamci~t,al 
e(iuat,ion ( :<.<I), but is determined by the distributiou of msttc~r of t,he c~JllfO~*nl:L~ 

ap~~r(~~ii~~~~tioii, that is, by the constant’s referring to t)h(t cosmological back 
~~l~ound. a 

IJet, us now cousider the equation (3.13) in the cast of a body at ttw origiij 
which dwtro.vs the conformal character of the wsmological backgro~md. \$‘cs 
lia\rc from t 3.20 j 

344 = ~7r&(r), (1;. I , 

ot,her romponwts of $,” being taken as zero. To start, with w t,akc the approxi. 
mation ill which the square of the curvature is neglwted. WV tind th(ql, ~~,~jt\g 
(5.22’) 

df, 7,) s $21 , t ti.2 1 

\VlNYC 

for a do Sitt’er universe and 

in a model of N galaxies distributed uniformly \vit Hill a sphwc of radiIi+ .I 
agGnst a de Sitter background. 

011 t.he ot’lwr baud the tensor densit’y XI,,” ( :%. I4 I associat(>d with tlw posmo 
logical structure is of order R-.-‘. Kwce ilk our approximation it is ll~~gligi\)I(~, 
IG~uat~ion ( i3.13) t#hen takes the form 

WP not(a that in this equation K has disappeared. l~urthcr, the tensor dwsit,y 
T,,” out of which the Ricci teusor density is construct-cd sat’isfi(>s the conditiotl 

4:Jj z 1 t-y = IM :;yJ>J. c G.fi 1 
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The tensor density equation (6.5) has the same form as the standard Einstein 
equations with a positive gravitation constant (see for instance ref. 34, p. 179). 
The static solution satisfying conditions ( 1.4) and (6.6) and having spherical 
symmetry for a point mass m at the origin is the well-known de Sit,ter solution 
(ref. 34, p. 202) 

ylJ0 = 1 - ET!!, -yes = 0, 
r 

-I 9.8 = -L-y1 - (&xq, 

where 
a = 6R'/M'. 

For the weak fields APV defined by (3.27) we have 

so that 
hi = ho0 - I&. = 0. (6.10) 

The effective gravitational constant is given by 

G = >$cza = 3&Rf/M'. (6.11) 

In the case of a pure de Sitter background we have 

G E 3m'R/M(O), (6.12) 

and in the case of N galaxies against a de Sitter background we have (6.11) 
with R'/M' given by (.5.22), that is 

G E 3~’ (6.13) 

or, if the contribution of mass scintillations could be neglected besides the contri- 
bution of stable galaxies 

G iz 2c'A/(Np), (6.14) 

where A is the radius of space enclosing N galaxies of mass P each. 
If R-' or A-' are not neglected we see that G must be space and time dependent. 
The geodesic equation of motion for a test particle moving in the field of a 

mass point against a conformally flat uniform cosmological background takes 
the approximate form 

(6.1.5) 



in the approximatiou of neglecting the scluare of tht, curvat,ure. 11~ tlic iwtl- 
relativistic approximation we obtain 

Thus, tlw gravitational force oii a twt, parti& dw to Uw tPiisor dwsity yGV is 
attracCv0 w&h a gravitational constant giveii l)y ( 6. I I ). 

In an ompt’y universe the masses :lI( 0) and p vanish so t,hat8 IVP have 

\vhwt~ ?H k die graV~tatb11d mass of the sourw and 7’ itS distaiw tcJ t~tlc’ tswt 

pa&i&. l~ormula (6.18) shows that the inertial mass is proportional t,o t hc 
t,otal mass contained in the universe and inversely proportional to its radius so 
that, in general it can be space and time dependenL l~or a discussion of I+[. t tj. 18 I 
the w&r is referred t’o ref. 10. 

Iu the wse of a pure de Sitter background the tensor density :JIT& giv(>il tq 
(Z. 14 ) is approximately proportional to tlw metric yP, , Gw factor of proport ioib 
ality lwing S ‘R’, so that instead of the Schwarzs~l~ild solution w must, tak(l tlw 
solution I we for instance ref. 35) 

I:inally, we may note that t’hc attractiw gravitational constant Ci giwn t)y 
c 6.17) in a de Sitter universe and associated with the tensor density yfiP is of ttw 
same order as the con&ant of cosmic repulsiw forces C given by (,j. 12 I ad 

associat,cd with the scalar density q. This remark .jusMes our commwlts ill 
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Section V on the fact that the expansion of the universe due to these repulsive 
forces has the correct order of magnitude. Another remark concerns the in- 
compatibility of the spatially infinite de Sitter universe with Mach’s principle 
since in that case the gravitational constant would vanish because Af(O) would 
diverge (4). 

VII. INERTIAL FORCES GENERATED BY UNIFORM ACCELERATION 

In this section we show that, in accordance with Mach’s principle, the inertial 
force acting on a uniformly accelerated body may be interpreted as the cosmic 
repulsive force due to the effect of the uniform substratum moving with the 
opposite acceleration with respect to the test body. Thus, in this case, the com- 
plete relativity of motion can be demonstrated. The notion of inertial force then 
becomes superfluous. To simplify the discussion we take a cosmological back- 
ground which is a pure de Sitter universe. The same arguments are also valid for 
a conformally flat, spatially homogeneous universe such as the model discussed 
in Section V. In the inertial system which is defined up to a de Sitter transfor- 
mation the metric is given by (2.4) where a(~*) satisfies 

in virtue of (4.3) and (4.14). 
Now, suppose that the source 3 of the field + is uniformly accelerated with 

respect to the inertial frame. This is done by subjecting the coordinates to a 
conformal transformation correspondin g to an acceleration a. Space-time still 
remains conformal in structure, but is no longer uniform. The flat space line 
element transforms according to the law 

where 

(7.3) 

and &L is given by (3.16) with .E’ replacing 2’. We also find 

where T* is given by (2.5). In the accelerated system the conform invariant 
equation (7.1) takes the form 

IJ’@‘( t’, r’) = i T+“(t’, r’)! (7.5) 



l:or small accelerations we 0Maiu 

01 

when the mass scintillations are accelerated. S(~l~r~~lat,i~ist;i~ally C 7.1 .j ) t:Lk(Ls 
t11r form 

&-‘,/# s -a. Ci.l:!~ 

14~uatio~~ ( 7.13) shows that in the special nonil~ertial frame that, corr~~sp~~nd~ 
to mass scintillations being accelerated with acceleratiotl a, there is all inertial 
force proportional to -a and acting on the trst part)icle. Since the mass sci~~~il- 
lat,ions provide the only system of refcrcnce we may say that the test, part,irl(> 
has accelerzat.iou a with respect to the inertial frame. \!iewed from the t,t~t 
particlc the universe no longer appears homogeneous and new forces ~IW to tli(s 
nonhomogeneity appear which we call inertial forces. 

IVV shall presently show that the inertial force in the accelerated systcam has 
the right magnitude. If OI is the gravitational mass of t.hc test particle we II~W 
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As in (6.18) defining the inertial mass by 
- 

‘min = ?E@(x) = %@(O)[l - (T2/4R2)]-l, (7.15) 

we see that the inertial mass is a scalar density of weight x. The equation of 
motion in the accelerated system takes the form 

(7.16) 

Now we have 

so that 

(7.18) 

and the inertial force caused by the action on the test particle of the accelerated 
mass scintillations is shown to be equal to the inertial mass of the test particle 
times minus its acceleration with respect to the mass scintillations of the de 
Sitter background. 

VIII. COMPARISON WITH OTHER THEORIES 

In this section we compare our reinterpretation of Einstein’s theory with some 
of the modifications of Einstein’s gravitational equations proposed by certain 
authors. Hoyle (12), Yilmaz (23), Brans and Dicke (14) have all introduced a 
scalar field in General Relativity in addition to the fundamental metric tensor 
g,,” . Unlike in Weyl’s geometry the scalar fields that occur in these theories have 
no geometrical meaning. 

Instead of Einstein’s equations (X9), Hoyle takes 

R,,v - %g,wR = -KT~ + (&,C); v, (8.1) 

where C is a fundamental scalar field. It serves to give expression to Weyl’s 
postulate in cosmology and hence to define the basic cosmological frame. Hoyle 
then shows that (8.1) admits the de Sitter metric as a solution if the universal 
length of (a$) is proportional to the curvature of the universe. We note that, 
written in the form (3.11) Einstein’s equations have a similar structure to (8.1) 
and, as shown in Section IV, they admit the de Sitter solution. 

Yilmaz adds to the right hand side of (3.9) a tensor proportional to the energy 
momentum tensor of a scalar field $J, namely 



Our equatious (3.11) contain tfiV as well as additional terms depending on t’he 
scalar field. Both these authors claim that the modified equation throws more 
light ou Mach’s principle (23, 13). 

The theory that the equations (3.11) resemble most is the one proposed by 
Braus and Dick? with the specific purpose of incorporating AIach’s principle iI1 
C;eneral Relativity. These authors introduce an additional scalar field q aud 
couple it t’o the metric tensor g,,” by the following heuristic m&hod: they start 
from Einstciu’s variational principle which in our defiuition (8.8) of &,” wads 

where 1, is t’he Lagrangian for matter. They divide the integral by the gravita- 
Conal constant G, then replace G-l by a scalar field C+C. For consisteucy, a term 
proport’ional to the Lagrangian of the field p is then added to the integrand. The 
variat’iou of the integral thus obtained gives the basic e(luations of Brans aud 
Dicke which are very similar to (S.11). An undetermined constaut w exprwsw 
the strength of the coupling of the scalar field to t’he metric tensor. 

We first remark that equations almost identical to (S.11) would have 1~~~ 
obtaiwd by a slight modification of Brans and Dicke’s procedure. Instead of 
dividing (8.:3) by G we could have divided by @ and t,heu replace CGF’ 1)~ c, 
adding a t#erm proportional to the Lagrangian of the scalar field. This moditiwl 
procedure gives as a new variational principle 

The resulting equations are exactly of the form (S.11 ) aud the t,wo theoriw 
become identical if we take GJ = 6 and impose the conditiotl 

+j = 1. f 8.*5 I 

To see that the theory thus obtained is the same as Einstein’s theory, we do uot 
modify Einstein’s variational principle (8.S), but simply reexpress the int,egraud 
in terms of the tensor density yPV and the scalar density p defiwd by (I.5 1 aud 
C l.:{). From CS.5) we obt,aiu 

[< = y2 CR - tipe’iO,yp,c. 1 S.fi 1 

Siwe we also have 
&q = q’, 

using a Lagrangian density 2 similar to expression (4.14) for T, we find 
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where K is the constant that appears in (3.9). Remembering the Machian con- 
dition that C,O vanishes at infinity, we can rewrite (8.7) in the form 

t5 b&R - 2K& + 6(+9,v)($“)] d4x = 0, 

which is the same as the heuristic Lagrangian in (8.4) with the condition (8.5) 
and w = 6, provided we work in the inertial system. 

Another remark concerns the equation (5.4). This equation which serves to 
determine the scalar field C,O is truly linear in the conformal approximation, that 
is, when the space is almost conformally flat. In theories like the one by Brans 
and Dicke, in which a nongeometrical scalar field is superimposed to the metric, 
the D’Alembert operator which occurs in an equation such as (5.4) is associated 
with the metric g,,” so that it is only linear in the weak field approximation when 
space is almost flat. In our case (5.4) becomes linear even for large gPV provided 
the deviations from the conformally flat structure are small. Thus one of the 
difficulties in Brans and Dicke’s theory which is associated with the need to justify 
the weak field approximation in a cosmological universe does not exist in our 
scheme based on Einstein’s original theory. 

It may also be noted that the separation of the metric tensor into a scalar 
density P and a tensor density y,,” with unit determinant is analogous to the sepa- 
ration of the four-vector field into its scalar and vector parts in Sciama’s model 
(10, 11) . The quantity p which describes the cosmological structure plays a 
role similar to that of the time component of Sciama’s four-vector field. 

From the standpoint of special relativity our separation corresponds to the 
separation of gPV into a Minkowski scalar q describing a spin zero field and a 
traceless Minkowski tensor hpv associated with the weak deviations of -r,,,” from 
the flat metric describing a spin two field. Expressed in terms of the inertial co- 
ordinates, Einstein’s theory is cast in a special relativistic form in accordance 
with the formulations of Gupta (24), Feynman (,%?5), and Thirring (17). 

The interpretation of General Relativity proposed here suggests that quantiza- 
tion of General Relativity should lead to two kinds of gravitons, namely, spin 
zero gravitons associated with cosmological effects and spin two gravitons giving 
rise to gravitational attraction. 

IX. CONCLUDING REMARKS 

To emphasize the difference between the Machian solution we have obtained 
and the standard solution corresponding to the flatness of space at infinity, we 
rewrite the de Sitter solution of the Einstein equations (3.9) in the weak gravita- 
tional field approximation for a point mass m in empty space. We have 



Here K is related to the gravitational constant G by the relation* 

G = C4K&r, f !i.Z 

so that t,he sign and magnitude of the gravitational force depend on the value of 
the constant8 X. When space is empty (m = O), we have 

dd = 71P” cl3 dxV, 1 !).:!I I 

that is, the metric of euclidean space. 
In our reformulation of Einstein’s theory we have a new solution of C %I 1 

for the gravitat,ional field of a mass point m immersed in a uniform universe with 
with total mass AI’ and radius of curvation R’. Accordin,q to (.5.2~), ( 6.7’1, an,v 
( e.8) an approximate expression for the metric is 

cl? = p2~pv dx’ dx’ z cp,,‘y,,v d.? dx”, f !).4j 

or 

lcrorn the form (5.19) of qll one may verify that away from matter c I’ --+ z 1, cc, 
vanishes so that the metric tensor tends to zero at infinity, unlike t’he m&G: 
tensor in (9.1) which tends to 7tiV . Furthermore, since the over-all multiplicative 
constant drops out of the equation of motion, NV see that the gravitational co11- 
st’ant’, unlike in (9.2), does not depend on K, but is det’ermined b.y the cosmological 
structure, having the positive value 

G = ;3&/1U’. t !J.fi ) 

The constant K corresponds to a constant scale transformation of the coordinates 
and cannot be measured by studying the motion of a body in a gravitational 
field. Howevw, it must be positive to lead to a finite AI’. Thus the observed 
finiteness of G implies a spatially closed universe. This is in agreement with 
H6nl’s results (4, 36). 

Turning now to the case of an empty uniwrsc, from (9.5 ) we conclude that 

lim di’ = 0. 
.W’+O,m-u 

Thus, if the curvature of the universe is kept fixed as the universe is depl&d of 
matter, the gravitational constant grows and the metric disappears, so that thew 
is no geometry in empty space. We conclude t’hat JIachian boui1dar.y condit,ions 
do not allow empty space solutions of Einstein’s equations. 
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From (6.18) it follows that the inertial mass of a test particle is also determined 
by the cosmological mass distribution and that it also vanishes in an empty 

universe. 
The foregoing results seem to show that LMach’s principle is indeed incorpo- 

rated in Einstein’s equations (3.9). In agreement with Fock’s view (30, 31), 
the uniformity of the cosmological background serves to define an inertial co- 
ordinate system in which unambiguous boundary conditions can be enunciated. 
In accordance with Einstein’s (1, 2) and Wheeler’s (9) expectations, these 
boundary conditions lead to solutions which exhibit Mach’s principle. 

Another result concerns the time dependence of the gravitational constant. 
This follows from the fact that G1 is proportional to q, that is, to a power of 
the determinant of the metric tensor. The possibility of a variable G had already 
been exploited in the theories of Milne (21), Dirac (22), Jordan (18), and 
Brans and Dicke. The exact time dependence of G is however determined by the 
form of the function F in (2.18), which is related to the deviations from the 
de Sitter background caused by the presence of stable matter in the universe. 

More light is also thrown on the Machian interpretation of centrifugal and 
Coriolis forces by the relation (9.6), since Thirring and Lense (3) and others 
(2, 7) have shown that this is the relation which allows the interpretation of 
inertial forces in a rotating frame as being gravitational forces due to the action 
of distant matter. This leads to the complete relativity of rotational motion 
(36, 3?‘, 38). 

Finally, an important problem that arises from our discussion concerns the 
stability and uniqueness of the cosmological structure. We have assumed the 
universe to have a de Sitter geometry in the first approximation. This corresponds, 
as we have seen, to a background of uniformly spread mass scintillations which 
could be interpreted as virtual pairs of massive particles in a quantum field 
theoretical picture. In the second approximation, taking the average contribu- 
tion of uniformly distributed stable matter into account, we may regard the over- 
all geometry of the universe as conformally flat. Repulsive forces between stable 
bodies are introduced at this stage. In the third approximation we also allow for 
the deviations of the Riemannian geometry from the conformally flat structure 
and thus introduce attractive gravitational forces which are superimposed on an 
expanding universe. This leads us to question the validity of these successive 
approximations to the geometry of space-time. Now, in a conformally flat uni- 
verse we have found the relation (9.6) in which, according to (6.13), part of 
the total mass df’, namely, iVp comes from stable matter and another part M(O) 
from the mass scintillations of the de Sitter background. If our approximation is 
a good one, we must have 
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According to XcVittie’s (3.9) discussion of recent cosmological data, if we take 
as A1 t)he &able mass in the universe (111(O) = O), then the equation (9.6) is 
off by a factor of about 30. This suggests that 

Np/M(O) G 376, c 9.9) 

and thus our approximation seems to be justified in the present stat’e of the uni- 
verse. However, it’ remains to be seen if a universe which has an approximat.ely 
conformally flat structure and deviates little from a de Sitter space-time will 
remain so in the course of the cosmical evolution governed by Einstein’s qua- 
tions. Such a study might help us understand whether the remarkable uniformity 
of our cosmological background is merely accidental or not. The arguments prc- 
sented in this paper seem to require a cosmological background that is con- 
formally flat, spatially closed, and spat’ially uniform for reasonable Machian 
solutions t80 exist. Uniformity with respect to time is not necessary, though con- 
venient for calculations. If this is the case, then the de Sitter group should have 
no global validity. A cosmological structure admitting the &parameter group of 
an I*2wtein space at each instance would be sufficient for the separation of local 
and cwmological effects implied by Mach’s principle. 
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