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It is argued that Einstein’s Theory of General Relativity as it stands incor-
porates Mach’s Principle. The boundary conditions for Machian solutions are
stated in 4 coordinate system in which the cosmological background is deseribed by
a conformally flat metric. The metric tensor g,, is then written as a product of the
scealur density ¢? and a tensor density -,, with unit determinant. In the coordinate
system that has been so chosen ¢ describes the cosmological structure, while ~,,
refers to gravitational phenomena. This becomes clear when Einstein's funda-
mental equations are rewritten in terms of ¢ and v,, . Then x¢™! is seen to play the
role of the gravitational constant instead of « in the weak field approximation. The
quantity xp~! can be expressed in terms of the radius and the total mass of 1he
universe and the sign of the forces between inhomogeneities of the metric is deter-
mined by the requirements of Mach’s principle. The forces which derive from ¢ are
found to be repulsive for the cosmological background, leading to the expansion
of the universe, while attractive gravitational forces arise from the deviations
of 5,, from the Minkowski metric. Various statements associated with Mach's
Principle are discussed in the light of this reformulation of Einstein's Theory.

I. INTRODUCTION

The Mach-Einstein doctrine, which has come to be known as Mach’s principle,
holds that the basic inertial frame is defined by distant bodies (Mach’s fixed
stars in the original formulation, now to be understood as the galaxies). Accord-
ing to this view, all inertial effects arise as a consequence of accelerations relative
to the system of distant galaxies. In particular, inertia of matter is due entirely
to the mutual action of matter. It has been suggested by Einstein that such a
mutual action arises from gravitational forces. Then, inertial forces on a body
would reduce to gravitational forces exerted by galaxies when the body and the
galaxies are in relative accelerated motion. Since, according to this point of view,
the need for distinguishing between inertial and gravitational forces disappears,
the weaker principle of equivalence follows from the stronger Mach-Einstein
principle.

The extent to which Einstein’s theory of gravitation, based on the principle of
equivalence, incorporates Mach’s principle in its strong form is, to this day, not
well known, although it has been extensively discussed by many authors, notably
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by Einstein (7, 2), Thirring and Lense (3), and more recently by Hénl (4), Pirani
(56), Bondi (6), Tangherlini (7), Brans (8), and Wheeler (9) among others. The
weak field solutions do reflect Mach’s principle in a weak form, showing a basic
similarity between inertial forces and gravitational forces generated by the ac-
celeration of distant bodies, without however leading to the complete identifica-
tion of inertial with gravitational effects. The weak field theory further allows
solutions for gravitational fields of massive bodies with arbitrary values of the
mass in an otherwise empty space. From the point of view of the Mach-Einstein
doctrine these are objectionable features of the solutions. On the hand, when other
masses are piled in the neighborhood of a test body, Einstein (2) has shown that
the inertial mass of the latter increases, so that inertia must be due, at least in
part, to the existence of other massive bodies in the universe. The work of Thirring
and Lense (3) has also demonstrated that inertial forces due to rotation with
respect to an inertial frame partly originate in the gravitational forces exerted
on the test body by rotating masses in the universe. These examples show that, as
far as Mach’s principle is concerned, Einstein’s theory offers possibilities that do
not exist in the Newtonian theory.

Lately, various authors have attempted to construct new theories of gravita-
tion designed to incorporate explicitly Mach’s principle in its strong form. In this
category we may cite Sciama’s (10, 17) ingenious vector theory, which is more of
an illustrative model than a theory of gravitation, since it leads to repulsive forces.
More realistic theories have been proposed by Hoyle (72, 13) and Brans and Dicke
(14). All such theories introduce nongeometrical entities such as new secalar or
vector fields superimposed on the metric tensor, thereby destroying the direct
relation between the curvature and the distribution of matter that is an essential
feature of Einstein’s purely geometrical theory of gravitation. Furthermore, a
certain degree of arbitrariness inevitably accompanies the introduction of such
new fields since the form and the strength of their coupling to the metric tensor
are not determined by the principles of General Relativity.

Our aim in this paper is to investigate further Einstein’s Theory in the light of
Mach’s principle without restricting ourselves to the weak field approximation.
We propose to exhibit new solutions satisfying Mach’s principle in its strong form.
These Machian solutions obey certain boundary conditions at spatial infinity,
the precise definition of which is one of our main tasks.

In order to find Machian solutions, we proceed in three steps. Firstly, since
our purpose is to examine Mach’s principle within the framework of General
Relativity, we have to find a way of separating local effects from the general
cosmological structure due to the distribution of distant bodies, because all
statements related to Mach’s principle involve such a separation. Secondly, the
boundary conditions being only meaningful in a definite coordinate system, we
must be able to introduce privileged coordinate frames determined by the over-



Lo
—
oo

GENERAL RELATIVITY AND MACH’S PRINCIPLE

all cosmological structure that has been separated in the first step. These are the
inertial frames that, according to Mach, are determined, to within a kinematical
group, by the over-all distribution of matter. Thirdly, to preserve the general
covariance of the theory, we have to show that Machian boundary conditions
can also be generalized to an arbitrary coordinate system, that is, to noninertial
frames.

The key to the success of this program lies in the observed simplicity of the
universe at large. A separation of the cosmological background from the local
irregularities of the geometry of space-time is made possible by the remarkable
uniformity in the distribution of galaxies, an observational fact expressed by the
cosmological principle. Roughly, the metrie can then be regarded as having a
part C,, which describes a geometry which is conformally flat and spatially
homogeneous, and another part referring to deviations from this uniform strue-
ture. The inertial frame can then be defined as one in which (', takes a conformal
form, so that light in this system travels on a straight line with velocity ¢. The
boundary conditions for the metric will now require the g,, to tend asymptotically
to a conformal metric characteristic of a uniform cosmological structure in the
inertial frame. Finally, in a general coordinate system, g,, should tend to (', which
describe the cosmological background in a noninertial frame. This last point
brings us to a re-examination of the meaning of general coordinate transforma-
tions in General Relativity. Essentially the point we want to make is that, an
aceeleration, namely, a transformation that takes the observer from an inertial
to a noninertial frame, should be interpreted as a transformation which distorts
the uniform and isotropic aspect of the cosmological background. The redistribu-
tion of cosmological matter implied by such a transformation will then result in
additional gravitational effects which manifest themselves as inertial forces.
Einstein’s statement that physical laws should be valid in any nouninertial sys-
tem will be read, from a Machian standpoint as: “The physical laws should
continue to hold in any cosmological background”. The foregoing discussion forms
the basis of Section 1I.

Now comes a crucial observation. Because the cosmological structure is con-
formally flat, we are led to the following boundary condition at spatial infinity
in the inertial system,

Gy — )\217,w t1.1)
where the function \ belongs to the cosmological line element. Tt also follows that
@ — A (1.2)

where

¢ = (—g)" = (=Det il g, N, (1.3)
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g being as usual the determinant of the metric tensor. Thus we must also have

Yur ™ Ny (1.4:)

with the definition
Yo = (—9) gu, (Det |vull = —1) (1.5)

Therefore, as long as we work in the inertial system all the information about
the cosmological structure is contained in the determinant of the metric and the
quantities +v,, describe local irregularities of structure. This suggests that, to
give mathematical expression to the separation between local and global effects
we can begin by re-expressing Einstein’s field equations and the geodesic equa-
tion of motion for a test particle in terms of the quantities ¢ and 7v,, . We note
that ¢ is not a true scalar and v,, not a true tensor but rather scalar and tensor
densities, respectively, with appropriate weights. It turns out that the same fields
also permit a linearization of the field equations even in the absence of the weak
field approximation. Hence it is important that we reformulate General Rela-
tivity in terms of these quantities. This is done in Section III. It also appears that
the function ¢ shows up as an inertial coefficient in the equation of motion. This
is directly relevant to Mach’s principle as ¢, not being a true scalar, will change
when masses in the universe are redistributed by a coordinate transformation.
Thus, the inertia of a test particle will depend on the cosmological structure.
It is shown later in the paper that in virtue of our boundary conditions, the
inertial mass of a particle in an otherwise empty universe vanishes.

Section IV is devoted to the study of the properties of a special cosmological
background uniform in space and time in agreement with the Perfect Cosmo-
logical Principle. This is known to be a de Sitter Universe. It is a special con-
formally flat universe with metric of the form (1.1) with A = ®, ® being a definite
function of the Lorentz invariant length. It is shown that, although the de Sitter
universe cannot contain stable matter, it may be interpreted as being associate
with a uniform distribution of mass scintillations, that is, unstable masses that
give use to a 8“ (z) singularity in the equation determining the metric, In the
case of a spatially closed de Sitter world a total mass may then be defined. The
metric is expressed in terms of the radius of curvature and the total mass in that
case, all the mass coming from mass scintillations.

In Section V we turn to the discussion of a conformally flat cosmological back-
ground which satisfies the more restricted form of the cosmological principle. In
the same section the possibility of a scalar theory of gravitation compatible with
Mach’s principle is investigated. This question has already been considered by
various authors (15, 16, 17), without, however, the restriction imposed by Mach’s
principle. The problem is reduced to that of formulating a gravitational theory
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in conformally flat space-time, since in this case, going to the inertial system, we
dispose only of one function

E=N—¢ (1.6}

to describe the deviations of the metric from the spatially homogeneous strue-
ture characterized by A. If £ is the field due to an inhomogeneity of the geometry
(such as a massive body embedded in an otherwise homogeneous universe),
Mach’s boundary condition (1.2) implies that ¢ — 0 at spatial infinity. We show
by studying the equation of motion that a test particle is repelled by the massive
body whatever the sign of the original constant in Einstein’s field equations. Thix
shows that there cannot be attractive forces between massive bodies in a con-
formally flat space-time. Turning the argument around, we conclude that
repulsion between galaxies strengthens our original model of a universe which is
roughly conformally flat and in which Mach’s principle is valid.

In Section VI we turn to the actual space-time structure where v,, #n,,,
so that we are no longer in the conformal case. It is shown that the existence of
the tensor field

huv = Y ™ Nuv { ]7)

leads to attraction between a test particle and massive body producing the tensor
field. Thus, a tensor theory of gravitation is necessary to describe local gravita-
tional phenomena in space-time. It is also shown that the solution for the field
of a massive body (like the sun) in presence of a homogeneous universe ix in
agreement with Schwarzschild’s solution in isotropic coordinates. I'urther it
is shown that the effective gravitational constant is proportional to the ratio
of the effective radius of the universe to its total mass as in Sciama’s model
(9) and in the theories proposed by Jordan (78), Dicke (19, 20), and Brans
and Dicke (73). In our nonstatic model, the gravitational constant is also
found to be time dependent as anticipated by Milne (27) and Dirac (22).

Section VII illustrates how, aceording to Mach and Einstein, inertial forees
due to acceleration (a uniform acceleration in our example) may be interpreted
as the gravitational force exerted by a cosmological background which appears
anisotropic and accelerated with the opposite acceleration.

Finally, in Section VIII we make a brief comparison between thix theory,
entirely based on General Relativity, and other theories in which Mach’s prineiple
appears at the cost of modifying Einstein’s original theory. It is noted that when
Finstein’s theory is reformulated by means of the quantities ¢ and v,, it takes
a form reminiscent of a variety of new field equations proposed by Hovle (72,
Yilmaz (23), Jordan (18), and others, and is strongly similar to the theory of
Brans and Dicke (74). The important difference is that the field ¢ is not a new
scalar field superimposed on the metric but it is a sealar density related to the
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metric tensor. In the inertial frame Einstein’s theory is Lorentz invariant and
hence can also be compared with the reformulations of the gravitational equa-
tions in flat space-time in the language of conventional field theory due to Gupta
(24), Thirring (17), and Feynman (25).

We conclude with a brief discussion of some remaining unsolved problems con-
nected with Mach’s principle.

II. THE PERFECT COSMOLOGICAL PRINCIPLE AND THE BASIC INERTIAL
FRAME. BOUNDARY CONDITIONS FOR MACHIAN SOLUTIONS

Our immediate aim is to define the basic inertial frame in General Relativity
without which any Machian analysis of inertial effects cannot be given a meaning.
Without concerning ourselves with the details of the space-time structure we
start from the global system of galaxies in our expanding universe. This
cosmological background has a simple structure which conforms to two principles.
The first is the so-called Weyl’s postulate which states that the world-lines of
galaxies diverge from a point in space-time situated in the finite or infinite past.
The second is the cosmological principle which expresses the spatial uniformity
of the universe so that the distribution of the galaxies would look the same to any
observer situated anywhere at a given time. The eosmological principle implies
spatial isotropy as well as constancy of curvature throughout space at a definite
time.

From the two principles it follows that there exists a preferred system of co-
ordinates (the Robertson-Walker system (26)) in which the line element takes
the simple form.

ds' = ¢ di* — R*)a*(r)(de® + dy* + d2) (2.1)
where
a(r) = (1 + Ygkr*)™ (2.2)

and % is the curvature of 3-space.

Tt has further been shown by Infeld and Schild (27) that, for most cosmological
models, it is possible to find a coordinate transformation which throws the line
element (2.1) into the conformal form

ds' = N(t, r) (& dit — da* — dy* — d2°). (2.3)

This means that the universe as we observe it must be, on the whole, con-
formally flat. In other words there exists a frame in which, in addition to the
cosmological principle and the Weyl postulate being satisfied, we also have light
rays travelling along straight lines with speed ¢. Such coordinate systems will
be called conformal cosmological coordinates. These are still not the inertial
coordinates we are looking for. In fact, consider a special conformal transforma-
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tion with a timelike constant acceleration vector. Combining it with a pure
Lorentz transformation, we can make the spatial components of the acceleration
vanish and this transformation (28) which does not destroy the isotropy of the
cosmological background will preserve the general form (2.3) of the line element.
The metrie (2.3) therefore does not rule out some types of accelerations and
if we start from an inertial frame, the new one will be noninertial.

What we need then is a more restrictive form for the cosmological metric which
leaves no room for acceleration transformations. This is provided by Bondi and
Gold’s (29) Perfect Cosmological Principle, according to which the universe in
the large is uniform not only in space but also in time, so that all points in space-
time are equivalent. Since this highly restrictive principle of uniformity has not
been disproved by observation so far, we shall adopt it for the purpose of this
paper as a rough approximation to the structure of the universe. Such spaces are
also conformally flat and in conformal coordinates the line element takes the form

ds’ = S — di’ — dy — &) = & (). da* Ao, (2.4)

where, as usual, " = ¢t and 7, is the metric of special relativity with diagonal
elements (1, —1, —1, —1). 7* is the square length of the position vector defined
by

7= Nl = &t — t2.5)
and the function &, characteristic of a homogeneous space-time is given by
(") = ®(0)(1— K77, (2.6)

where K is real for positive and imaginary for negative spatial curvature.

Now the metric (2.4) determines the coordinate system to within a 10-param-
eter kinematical group. This is the well-known de Sitter group which includes
the 6-parameter homogeneous Lorentz group as a subgroup and also includes
four displacements which reduce to space-time translations for K = (. Since
observationally K is very small, the group of the metric (2.4) is essentially iden-
tical with the Poincaré group which is the group of transformation of inertial
frames.

The Perfect Cosmological Principle which states that the laws of physics are
the same for every observer at any place and any time leads us therefore to a
de Sitter structure for the cosmological background and to the invariance of
physical laws under the de Sitter group which reduces to the group of Special
Relativity for a negligible curvature. This conclusion is in perfect accordance with
Irock’s insistence (30, 31) that Special Relativity expresses the uniformity of
space-time. Fock, however, restricts himself to the case K = 0, so that he deals
with an empty universe. We simply say, from a Machian standpoint, that Special
Relativity (in the generalized sense of de Sitter invariance of physical laws) is a
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consequence of the approximate uniformity in space and time (the Perfect Cos-
mological Principle) of the cosmological background.

Having now defined the inertial coordinate system as the one in which the
cosmological line element takes the limiting form (2.4) we can state the boundary
conditions for the metric g,, of the actual space-time in this inertial system. We
must have asymptotically,

gﬁ“’ ~ ©2(T2)7’uv (2.7)

as in (1.1). Introducing the tensor density v,, with unit determinant by (1.5)
and the scalar density ¢ by (1.3) we can also rewrite the condition (2.7) in the
forms (1.2) and (1.4). By definition v/ —g is a scalar density with weight 1,
so that ¢ Is a scalar density of weight 14 and +,, a tensor density of weight —14.
Expressing deviations of the metric g,, from the de Sitter metric by means of
¢ and h,, defined by (1.6) and (1.7) respectively, we see that the Lorentz scalar
¢ and the Lorentz tensor h,, obey the boundary conditions

lim £ = 0, (2.8)

T=>00

and
lim huv = (2.9)

in the inertial frame.
Furthermore because & — 0 for large », when ¢ is kept constant, we also have,
in the inertial frame,
lim g,, = 0. (2.10)
This last condition was called “degeneration of the metric’”’ by Einstein (1)
who made an attempt to use it in connection with Mach’s principle. However,
the special frame in which this degeneration occurs was not specified by Einstein
so that it remained as a vague statement which seemed to lead to contradictions.
The condition (2.10) is obviously not satisfied in the Robertson-Walker system,
nor is it in a system for which A/ —g = 1, this latter being the one favored by
Einstein.
In a general noninertial frame, the conformally flat universe is no longer de-
scribed by one function A, but by a metric tensor C,, which satisfies the conditions
of conformal flatness. Then, instead of (2.3) we must have the asymptotic metric

; ds’ = C,, dz* dz’ (2.11)
where C,, satisfies the condition

R;v)\ = }"éR(év"Cu)\ - 6)\KCyv) - }é(ay‘Ru)\ - (SXKRW + C/.;)‘Rv‘( - C,”R)\K), (212)
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which is the condition for the space to be conformally flat (32). Here the left hand
side of (2.12) is the curvature tensor constructed out of the metric C,, . Thus
(2.12) is the covariant condition that g, must satisfy asymptotically if the
cosmological structure is conformal.

On the other hand, if we regard the universe as having constant curvature as
a first approximation, then it is a special conformal space-time, that satisfies the
more stringent covariant condition

R:v)\ = I".D(av“(‘yu)\ - 6)\‘(("/41/), 1213 ‘)

where ky is the curvature of the de Sitter universe. Then (2.12) is automatically
satisfied since, as a consequence of (2.13), we also have

Riw = By = —3k(, . 12.14)
In virtue of the relation
R = —12k, (2.13)
we can also write (2.13) in the form
Rin = —M2R(8.,Cia — 8"C). (2.16)

For weak gravitational fields we can now assume that the deviations of the
curvature tensor from the form (2.16) are small. This is a completely covariant
condition which replaces (2.7).

In a noninertial frame the de Sitter cosmological structure will be described
by a metric C,, which satisfies (2.16) but not the cosmological postulates. The
latter are however satisfied in special frames, namely, the inertial frames for
which C,, takes the form

Cuv = @2(72)7]‘“ . (_)]7)

These are the frames in which light propagates along straight lines with velocity
¢. Furthermore in these inertial coordinates the universe looks isotropic while it
will generally appear anisotropic in an accelerated system.

In a conformally flat universe where the cosmological principle of spatial
homogeneity and Weyl’s postulate are valid we can find a coordinate system,
which we ecall the Infeld-Schild system (27), in which the cosmological line
element takes the form (2.3) with

N F2 2\—1 t .
instead of the form (2.4) associated with the Perfect Cosmological Principle.

Then the Infeld-Schild system will define the inertial frame in the limit in which
the function F may be approximated by a constant (the de Sitter limit).
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IT1. SEPARATION OF EINSTEIN’S GRAVITATIONAL EQUATIONS IN AN
INERTIAL SYSTEM

In this section we wish to show how the conformal part and the homogeneous
de Sitter background of the space-time geometry can be separated in an inertial

system of coordinates.
Let the line element be given by

d82 = Guw de* do” = ‘P2'Ym' da* dxv, (31)

where g,, is the metric tensor, ¢ the scalar density defined by (1.3), and v,, the
tensor density defined by (1.5). By definition 4/ —g is a scalar density of weight
L. Tt follows that ¢ and v, have respectively weights 14 and —14. Define ®,, as
the Ricci tensor constructed out of v,, and ® as the quantity

R =v'® (3.2)
where v is defined by
Y = (=" = &, (3.3)
50 that we have
Y e = 8/ (34)

Then, according to a standard formula of Riemannian geometry (see ref. 32,
p. 90) we have

Ruv - }égva = (R/w - }é')’ny(ﬂ - 4¢_2[(6M‘P)(6V‘p) - %’Yﬂ"(a“&)(a)\(‘o)]
+ 2¢-1[(3“§0);v - 'anD(7)§0]’

where the covariant derivative on the right hand side refers to the tensor v,, and
¢y 1s the generalized D’Alembert operator construeted with v,, , so that

Ome = (0,)” = (1/V—=7)8.(vV=97"00). (3.6)
Remembering from (1.5) that

(3.5)

v = Det [lvu] = -1,
we find
Owme = 0u(7"0). (3.7)
With the customary definition of E,, as
Ry = 8,9, logn/—g — T5da logn/—g + T, — 8.T5, (3.8)
Einstein’s covariant equations of gravitation read
R, — Y3guR = —«T . . (3.9)
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In Einstein’s theory « is positive and proportional to the gravitational constant,
the factor of proportionality being 8m/c*. Here we shall not specify « as yet.
Defining ®,” as

RS = 7" R (3.10)
by means of the contravariant densities ~™ defined by (3.4) we find, usiug (3.5),
R — LabS 0~ e 1(8u) (8%0) — 110/ (3ne) (3'0)]
+ 20 1(0e)” — 8’ Ongl = —xe’g" T . S
Now we introduce the tensor density 3, of weight 3; through the definition:
30 = &g T . (3.12)
The tensor density equation (3.11) takes the form
Ry — 128/ R = —xg 3,0 + M (¢), (3.13)
where
M () = 4¢[(0u0) (Fe) — 148, (0he)(0')] _
. " ) (3.14)
= 2¢ [(Bue) "L 8 Oipel,

the indices being raised by means of the tensor density ™.

The introduection of the density 3. can be justified by a straightforward
generalization of the expression of the energy momentum teusor for a system of
mass points in flat space. In flat space we have (see for example ref. /7,

) 5 dz" dz .
{, = Z ;¢ / du; 5(4)(_.1' — ) STy (3.15)
7 g du :

where
du' = g, d2 d2 (3.16)

is the line element in flat space. In the general Riemannian space with metric
given by (3.1) we introduce the scalar density dr of weight —1; defined by
dr* = v do* d" (317)

so that we have
ds = ¢ dr (3.18)

for the secalar line element. Now, in an inertial system we have v,, — 7,, asymp-
totically, so that we also have

dr — du. (3.19)
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The tensor density obtained from (3.15) by the substitutions of dr for du and
Yw for 7, , namely,

- ¥ md f a6 (e — () % dz’ dz‘ - (3.20)

will be a tensor density of weight 34, which asymptotically goes over to the
cartesian energy momentum tensor of flat space. This is then the explicit form
for a system of mass points of the tensor density defined by (3.12). Equations
(3.13) and (3.14) together with the condition on the determinant (1.5) are
equivalent to the original Einstein equations (3.9) and form the starting of our

investigation.
Contraecting Eq. (3.13) we also find
—® = —kg I+ M = ¢ (=63 + 60me). (3.21)
The geodesic equation which describes the motion of a test particle is
dz* » dzt da’
as + Ty s ds 0, (3.22)

where T'}, is the Christoffel symbol corresponding to the tensor g, that appears
in the metric (3.1). By means of (3.17) and (3.18) the geodesic equation takes
the well-known form

d ( dz"\ _ A\ do* do
o <<p El?) =500 — ‘p{uv}?i: P (3.23)

where the Christoffel symbol is constructed with the help of the tensor density
Y . An alternative form is

d dx’ dz d.L
dr (‘P'va '(Z_‘) = Js0 2<p(8 ’Y)\v) 3 ar (3.24)

The quantities ¢ and h,, introduced by (1.6) and (1.7) are small in an inertial
system away from sources of gravitational fields. Let us first consider the case
of vanishing £ and A, . Then, using (2.6), we can write

02 &(7H) = 8(0)(1 — 7*/4RH! (3.25)
where R is the radius of curvature of the de Sitter universe. We find for the
tensor density defined in (3.14)

M, (¢) = M () = @T(—?;)“RZ %, (3.26)

In the general case we may put

=1+ (£/8)]vw = [1 + (#®) (nw + hw) (3.27)
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so that a,, differs little from n,, away from gravitational sources and the metric
takes the form

G = B (7)ot (3.28)

in the inertial coordinate system.
If ®,” is the Rieei tensor corresponding to the metric «,, , we obtain, similarly
to (3.131,

&uy - ,1'/2/5#”@ = _KCI)*ISAV + (@), (3.29)
where 3, is given by
3. = ¢ T (3.30)

and a1, (@) takes the limiting value (3.26) when a,, is approximated by n,, .
The contracted form of (3.29) is

—® = & (=3 + 606P). (3.31)

On the other hand we have

0% = 79,0,0 = (2/8°(0)R*)®", (3.32)
s0 that in the zero approximation (¢ = 0, s, = 0) we have
Lad =~ 0% = (2/9°(0)R")®’. (3.33)
Introducing the scalar 7' through
T =g¢"T,, (3.34)
the contracted form of (3.30) reads
T =a" (3.35)
so that (3.33) takes the form
LekT = 2/92(0)R°. (3.36)
For small deviations from the de Sitter metric we may put
Quy = T + Qs (3.537)

where a,, 1% small in an inertial system away from inhomogeneities. We have
O = (28/®)n {3.38)

Then, 1n the zero approximation (a,, = 0), the parameters of the de Sitter back-
ground are related to the trace of the energy-momentum tensor by means of
(3.36). The field o, is then determined from the equations (3.29).

We note that the equation of motion (3.23) of a test particle may also be
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rewritten in terms of ® and «,, in the form

d (. d\ 5, M| dat d2”
&;<¢E>—aap¢—¢ v 3;71__—, (3.39)

where
drt = a,, d’ dx’,
and the Christoffel symbol refers to the metrie a,, .

1v. THE DE SITTER BACKGROUND

First we consider the case of a homogeneous universe where the functions
a,, describing the inhomogeneities vanish. For x > 0 we find, from (3.36)

1 T\ Y2 2 — A\
3(r) = 2 (;—2> (1 + —ZRT) (4.1)
as the solution of (3.33). If x < 0, we have
1 [(—«T\"* P — A\
v =5 () (-Sm) (42)

In the first case the de Sitter universe has positive spatial curvature for ¢ = 0
while the second case corresponds to negative curvature. In these solutions the
radius of curvature R is arbitrary. We now propose to define the total mass of a
de Sitter universe in the case of positive curvature. In the de Sitter case, we have,
from (3.21)

Dcp—(l‘i_V?)q):fg (4.3)
\& o 6" :
where, in virtue of (3.20),

3= Tomd [ duis®@ — aw)). (4.4)

On the other hand, for a static distribution of matter we have the Poisson
equation

V'V = 4w’ 2 md(r — 1), (4.5)

where V is the Newtonian potential. The total mass of the system is in this case
1

47’

M= m = [ (V)i (4.6)

We see that (4.3), in the inertial system, is the special relativistic generalization
of (4.5), ® playing the role of a nonstatic Newtonian potential. We may then
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define a total mass enclosed in a de Sitter universe at time ¢ by

M) = =5 <v’2 6“>c1>d“r - .:';/ 0@ d'r. (47

KC* c2of?

Using (3.32) and (3.36) we find
12 1 3 3 1 3
Mt:_—_fqad =,~qu>dr, (18)
O = EFoR = e

50 that, in the case of positive curvature

W(t) = 1 T (0) f (1 +"2_—62t2>_3 &’r
: e ’ 1R? ‘

s . o s (419
4w .3 . = et\ T
=T 1+ =) 2an
= T® (O)fo < + e > i~
Carrying out the integration, we obtain
o’ ‘s A\
M(t) = 1 — = 1.
(t) = = Tbe(O)( 4R2> , (4.10)
or
C‘ltil —3/2
Mty =M 1 - (+11)
) (0) ( 4R2> 11
with
M(0) = (20°/)TR®(0) = (247" /kc’)RD(0). (4.12)

Thus we have the important relation

R 1 &

M© ~ 2452 3(0) (k> 0), (113)

which expresses the ratio x/®(0) in terms of the total mass and radius of the de
Sitter universe.
For the mass density 3 in the de Sitter universe we find, from (3.35)

3=173="T¢, (4.14)
50 that, using (4.12) we find

1 M0)e (+15)

j— 3 —
3(0) = T8(0) = 5= =

This is just the total rest energy of the de Sitter universe divided by its total
volume.
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Coming now to the case of negative curvature we note that in this case the
integral on the right hand side of (4.9) diverges and the enclosed mass is infinite.
A relation like (4.13) connecting the constant « with the mass of the universe no
longer exists for the spatially open de Sitter world.

We owe another word of explanation in connection with the statement that
the de Sitter universe is empty. What is meant by emptiness in the literature is
the absence of a model of a fluid composed of stable particles to describe the
properties of the de Sitter universe and generate its metric. This, however, does
not mean that in such a universe the energy-momentum density of matter
vanishes identically. From (3.29) and (3.26) we find

k3w = (3/2"(0)R*)®n . (4.16)

A distribution of stable matter cannot have an energy-momentum distribution
given by (4.16). It cannot represent a radiation filled universe either, since 3 = 0.

It is possible to find a physical interpretation of an energy-momentum tensor
of the form (4.16) if we think of the curvature induced by a massive particle
appearing and immediately disappearing at a world point with coordinates &, ,
that is, at the point with position vector £ at time & . Such a single event may
be called a “mass scintillation.” The scalar density & then satisfies an equation
of the form

0% = vz — &), (4.17)

where v is a constant. One solution of this inhomogeneous equation is
& = (4m) (| x — £[") for|z—£[°> 0, (4.18)

®; =0 for |z — £ < 0.

It can now be shown that the energy-momentum tensor density corresponding
to such a mass scintillation is proportional to 7,, so that the expression 3,, given
by (4.16) may be regarded as arising from a uniform distribution of mass scintil-
lations.

The motion of a test particle in the de Sitter universe with positive spatial
curvature is given by

d dz* w "
5 (20) = 7ot = o (4.19)

or

d (& do* 2" ® \°
5 G ) = 37 (500 - (+20)
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Neglecting R we find

o

dx ., X (421
di T 2R?
or
dx X
X = — hx (4.22)
it =FVeR T ™

FFor the time interval (—2R/c) to 0 we have the positive sign corresponding:
to an expansion with Hubble’s constant

h = ¢/R\/2. (4.23)

I'rom (4.19) we see that ®(0) is proportional to the inertial mass of the particle.
When the total mass of the universe decreases, R being kept constant, it follows
from (4.13) that ®(0), and hence the inertia of the particle, decreases too. This
is in accordance with Mach’s principle as it will be shown in the following sections
in more detail.

V. REPULSIVE COSMIC FORCES IN CONFORMAL SPACE-TIME. IMPOSSIBILITY
OF A SCALAR THEORY OF GRAVITATION

In this section we shall treat a space-time model which is conformally flat
but not homogeneous. It is therefore less simple than the de Sitter case. It does
not satisfy Bondi and Gold’s Perfect Cosmological Principle but the more re-
stricted form of the cosmological principle associated with spatial homogeneity.
We start from a de Sitter background due to a uniform spread of mass scintil-
lations. On this background we superimpose one inhomogeneity, keeping however
the conformally flat character of the geometry. Let us take the stable mass point
as the origin of coordinates. The de Sitter background allows us to define an
inertial system so that we can use the equations of Section I1I with the condition

how =0, Or v, = g, (5.1
which expresses conformal flatness. We have
ds’ = ¢ m,, d2* dx, (5.2)
with
¢ = &(7°) + &r). (5.3)

This metric describes a static isotropic field due to the inhomogeneity at the
origin. To determine £ we use Eq. (3.21) which takes the form

Oe = O(® + &) = 14«3. (5.4)
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Now 3 has two parts, one coming from the de Sitter structure given by (3.33)
and the other from the existence of the stable mass point at the origin. Thus
we have

12 & 2

J=— F5——— .

2 i ), (55)

where m is the mass of the inhomogeneity.
With this value of 3, (5.4) gives the following equation for ¢

Vi = —Lgkuc’s(r). (5.6)

Since in the inertial system we require the metric to go over to the de Sitter
metric away from inhomogeneities we must solve (5.6) with the Machian con-
dition

lim = 0. (5.7)

>0

Remembering that « is positive, this solution is therefore

2
_ K p
£ = T {(5.8)
The metric of this universe has then the form
2 2
2 KC H 9
ds* = (@ + 9in r> du’, (5.9)

where di’ is the Minkowski line element given by (3.16).
Let us now discuss the motion of a test particle in this universe. Equation
(3.23) gives

sz? [(% + 547:;;(0_) $> Zl%] B 2%2 (@?0))2 + 24:5(0) 0 (i—‘) (510)

Neglecting for the moment the cosmical expansion, and using (4.13), we find

approximately
d R M ax _ R M
w0 ) E] - i T ) (511

Thus, the test particle will be subject to a repulsive radial force proportional
to the mass u of the body at the origin, the coefficient of proportionality being

C = RS’ /mM(0), (5.12)

where R is the radius of the de Sitter universe and 3 (0) its total mass at time
t = 0.
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This is not a gravitational, but rather an antigravitational force acting between
massive bodies in a conformal space-time.

Supposing that more masses m; are piled up at points with coordinates a, |
the geometry being kept conformally flat, these various points will repel each
other with a force inversely proportional to the square of their relative distances.
If we take these massive inhomogeneities in a conformal space-time as the
galaxies we see that we arrive at a picture of the universe in which galaxies exert
on each other a Coulomb-like repulsive force. This is exactly like the “clectric
universe” model of Bondi and Lyttleton (33). These authors have postulated
such a repulsive force between galaxies to which, however, they ascribe an electric
origin. They show that, as a vesult, one gets an expanding universe obeying
Hubble’s law. The repulsive force needed between two galaxies corresponds to a
charge excess of the order of 107, so that the foree is of the order

[ ~ ]07——3‘; (‘2 li)_

B 9 m

my= re

where p is the mass of a galaxy and my the mass of a hydrogen atom. Since we
have numerically

¢/Gmy’ = 10", o

( being the gravitational constant, we find
= Gu /e, (5151

s0 that one needs a repulsive force of the order of the gravitational force. This
is exaetly the repulsion given by our Machian model provided the constant. (7 of
(h.12) 15 of the order of the gravitational constant.

Now consider our model of a conformal space-time in which N galaxics of
mass u arc situated at the positions a; at time { = 0.

The total mass of the universe is given by

6 . . [ - )
:\T(( 0) = ’l‘, f (D(,O)[:U (l“r = 11[(0) - 2_, j V-E (/r = A’l[( 0) ‘i— i\’v[J.. (..)]“)
K¢ K=

The total mass comes partly from the mass seintillations of the de Sitter back-
ground and partly from the mass of stable matter. The equation for £ is

‘
Ve = —deu X0 — a), :

i=1

-t
N

o that the solution vanishing at infinity gives

] Y 5: 1
p=d £ =\ £ HOS L (5
i ° ( 247rzgir—a,.i’ 5.18)
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or, using (4.13),
o = (@) = X (M(()) 1 +u —1—'> (5.19)

247 \ =R 1 4+ r*/(4R?» T |r— a

Let us introduce the function

1
Vir) = ——— s .
() =p T pig (5.20)
assuming that galaxies are spread uniformly within a sphere of radius 4. Since
the total mass of galaxies is Ny, we find from potential theory

_ 3N _ "
[—g(l @) fOI‘TéA,

V(T)T (5.21)
_ Nu forr = A.

r
This is a decreasing function of r similar in behavior to the function
(1 + +*/4R")™" which occurs in the first term of (5.19). Thus in the static ap-
proximation the galaxies contribute to the general curvature and total mass of
the spatially closed universe. Since the force between these galaxies has been
shown to be repulsive in a conformal space-time, the radius A charaeterizing the
distribution of stable matter will be an increasing function of time. The function
¢ in a conformal universe filled with stable matter will then have the form
¢(t, ) instead of the form ¢(7") in the de Sitter universe.

In the approximation of neglecting the square of the curvature we find that at
time t = 0, ¢ is approximated by the following constant

k¢’ (M(0) 3Nﬂ> ke’ M’
“ o (‘TR +t51) s (522)
where

M' = M(0) + Nu (5.23)

is the total mass of the universe and R’ an average radius of curvature defined
hy (56.22).

Summing up the discussion in this section, we can state that the Machian
boundary conditions rule out a gravitational theory based on a scalar field in a
conformally flat universe. It is known that without Mach’s principle there is no
a priori reason against a scalar theory of gravitation (77). On the other hand if
the universe at large is conformally flat, the Machian solutions for the metric
impose repulsive forces of the order of gravitational foreces (antigravitational
forces) between galaxies that cause the galactic system to expand in accordance
with Hubble’s law against a de Sitter background.
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VI. TENSOR THEORY OF GRAVITATION. SIGN AND MAGNITUDE OF THIE
GRAVITATIONAL CONSTANT

We have seen in the preceding section that if the universe is conformally flat
in the first approximation, as it seems to be observationally, then Machian
boundary conditions allow only repulsive forees in this cosmological background.
1t is our purpose to show in this section that attractive gravitational interactions
are automatically introduced if the metric is not conformally flat, through the
“tensorial” part A, of the metric and, further, that the strength of this inter-
action is independent of the constant x that appears in Einstein’s fundamental
equation (3.9), but is determined by the distribution of matter of the conformal
approximation, that is, by the constants referring to the cosmological back
ground.

Let us now consider the equation (3.13) in the case of a body at the origin
which destroys the conformal character of the cosmological background. We
have from (3.20)

32 = mcs(r), (6.1

other components of 3,” being taken as zero. To start with we take the approxi-
mation in which the square of the curvature is neglected. We find then, using
(5.22)
<p(_f, 7') = ¢, (6.2
where
k¢’ M(0) .
© = oy (N
2rt R ’

for a de Sitter universe and

wt M’ k¢ (M(0) 3Nu .
=t = o (U + 2 (Gl

in a model of N galaxies distributed uniformly within a sphere of radius A
against a de Sitter background.

On the other hand the tensor density 917, (3.14) associated with the eosmo-
logieal structure is of order R™*. Henee in our approximation it is negligible,
TFquation (3.13) then takes the form

v , 3‘17[' [{

=~ T (Hh.0)

R = 58 R —xpy 3,

We note that in this equation « has disappearcd. Further, the tensor density
v out of which the Ricel tensor density is constructed satisfies the condition

vV =y =1 (v = Det v, (6.6)
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The tensor density equation (6.5) has the same form as the standard Einstein
equations with a positive gravitation constant (see for instance ref. 34, p. 179).
The static solution satisfying conditions (1.4) and (6.6) and having spherical
symmetry for a point mass m at the origin is the well-known de Sitter solution
(ref. 34, p. 202)

'YUU:l_aTma 708:07
(6.7)
=g m_ 1w
Yre " T = (am/)
where
a = 6R /M. (6.8)
Tor the weak fields h,, defined by (3.27) we have
ant oM Xr X
h()O = —T, hrs = _T—TT’ (69)
so that
hp“ = hOO - hrr = (), (6.10)
The effective gravitational constant is given by
G = l4c’a = 3caR' /M’ (6.11)

In the case of a pure de Sitter background we have
G = 3rc’R/M(0), (6.12)

and in the case of N galaxies against a de Sitter background we have (6.11)
with R'/M’ given by (5.22), that is

M(0) 3N">_1 (6.13)

r~ 2 . -
G = 3c ( =R T 24

or, if the contribution of mass scintillations could be neglected besides the contri-
bution of stable galaxies
G = 2¢'A/(Ny), (6.14)

where A is the radius of space enclosing N galaxies of mass u each.
If R or A~ are not neglected we see that G' must be space and time dependent.
The geodesic equation of motion for a test particle moving in the field of a
mass point against a conformally flat uniform cosmological background takes
the approximate form

d A A det da”
a; ((Pﬁ E_‘) = — ¥ {/J.V} —&: E (615)
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in the approximation of negleeting the square of the curvature. In the unon-

relativistic approximation we obtain

2oy ~ 2 py! s
dz 1 o Gwx o R

T s P e X~ e =B (6160
dt 27 "o Mo
Thus, the gravitational force on a test particle due to the tensor density v, is
attractive with a gravitational constant given by (6.11).

[n an empty universe the masses 17(0) and u vanish so that we have

iy = (), (()]7)

and the equation of motion (6.15) is satisfied when the veloeity 1s an arbitrary
funetion of the time. Thus, Newton’s law of inertia is not satisfied in an empty
universe, in accordance with Mach’s principle. Equation (6.15) shows that the
inertial mass of a test particle is proportional to ¢y and henee to M/ R’. We may
then put

M = (M 3SR o= G (6.18)

if m is the gravitational mass of the test particle. Then the gravitational foree
acting on the test particle becomes
" _ Um’ e’ )
jmnv = =My - = — s (6.19)
rer rer
where m is the gravitational mass of the source and » its distance to the test
particle. IFormula (6.18) shows that the inertial mass s proportional to the
total mass contained in the universe and inversely proportional to its radius o
that in general it can be space and time dependent. 'or a discussion of Eq. (6.18)
the reader is referred to ref. 10.

In the case of a pure de Sitter background the tensor density W, given by
(3.14) 1s approximately proportional to the metric v,, , the factor of proportion-
ality being 3'R’, so that instead of the Schwarzschild solution we must take the
solution (see for instance ref, 35)

) . (6.20)
ailt r 2 win "
ps = = Opg — — =}y //'“ I — — — — .
v < r + ]?") / ( r If’“’)

Finally, we may note that the attractive gravitational constant ¢ given by
(6.17) in a de Sitter universe and associated with the tensor density v,, is of the
same order as the constant of cosmie repulsive forces ¢ given by (5.12) and
associated with the scalar density ¢. This remark justifies our comments in
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Section V on the fact that the expansion of the universe due to these repulsive
forces has the correct order of magnitude. Another remark concerns the in-
compatibility of the spatially infinite de Sitter universe with Mach’s principle
since in that case the gravitational constant would vanish because M (0) would

diverge (4).

VII. INERTIAL FORCES GENERATED BY UNIFORM ACCELERATION

In this section we show that, in accordance with Mach’s principle, the inertial
force acting on a uniformly acecelerated body may be interpreted as the cosmic
repulsive force due to the effect of the uniform substratum moving with the
opposite acceleration with respect to the test body. Thus, in this case, the com-
plete relativity of motion can be demonstrated. The notion of inertial force then
becomes superfluous. To simplify the discussion we take a cosmological back-
ground which is a pure de Sitter universe. The same arguments are also valid for
a conformally flat, spatially homogeneous universe such as the model discussed
in Section V. In the inertial system which is defined up to a de Sitter transfor-
mation the metric is given by (2.4) where ®(+°) satisfies

2
_ (1 8 _ V2> = S5 =5 TE(, (7.1)

in virtue of (4.3) and (4.14).

Now, suppose that the source 3 of the field & is uniformly accelerated with
respect to the inertial frame. This is done by subjecting the coordinates to a
conformal transformation corresponding to an acceleration a. Space-time still
remains conformal in structure, but is no longer uniform. The flat space line
element transforms aceording to the law

du = \({, r)dv/, (7.2)
where
4 2 —1
AL, T) = [1 - Eczi + i“cj (" — r’2>] , (7.3)

and du is given by (3.16) with z" replacing 2. We also find
7 = \{, ), (7.4)

where 7° is given by (2.5). In the accelerated system the conform invariant
equation (7.1) takes the form

a'e' (', r) = g'rcp""u’, r), (7.5)
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where
) = N e, (7.6)
s0 that the metric of the aceelerated de Sitter hackground is
ds” = N, OB (M g dd™* di”. (7.7

The geodesie equation of motion in the de Sitter universe in which mass scintil-
lations are accelerated with aceeleration a reads

l p d, 7,“ . 9 -y
S [m()\r”) T = e (7.8)
L .
Ior small accelerations we obtain

"

(1, 1" = () + " [ dj A A)] : (79)
a=I}

or

I

d)( r) =~ &(r -)_+__,.,, b7, (7.10)

The geodesic equation which s

d [ d(r )'LL] = §¢*d(7") (7117
du

when the mass scintillations of the de Sitter universe are at rest is changed into

e e

when the mass scintillations are accelerated. Nom‘elatnqstically (7.15) takes
the form
R -y
&'/ >~ —a. (7.13)

Ilquation (7.13) shows that in the special noninertial frame that corresponds
to mass scintillations being accelerated with acceleration a, there is an inertial
force proportional to —a and acting on the test particle. Since the mass seintil-
lations provide the only system of reference we may say that the test particle
has acceleration a with respect to the inertial frame. Viewed from the test
particle the universe no longer appears homogeneous and new forces due to the
nonhomogeneity appear which we call inertial forces.

We shall presently show that the inertial foree in the accelerated system has
the right magunitude. If 7 is the gravitational mass of the test particle we have

de”

d o, ! £ . -
W‘:mcb (") ({“,] o md (2. (7.14)
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As in (6.18) defining the inertial mass by
fin = Wd(z) = MP(0)[1 — (F/4RD]™, (7.15)

we see that the inertial mass is a scalar density of weight 14. The equation of
motion in the accelerated system takes the form

u
diu, <m g%) = 8"ty . (7.16)
Now we have
Min = ME(O)N(E, ") <1 4R2> o <1 + 7 ) Mhin (7.17)
so that
d {_, da’ d (_ di'* _
87 <min diu,> g W <min ;7) g — Min aP’ (7-18)

and the inertial force caused by the action on the test particle of the accelerated
mass scintillations is shown to be equal to the inertial mass of the test particle
times minus its acceleration with respect to the mass scintillations of the de
Sitter background.

VIII. COMPARISON WITH OTHER THEORIES

In this section we compare our reinterpretation of Einstein’s theory with some
of the modifications of Einstein’s gravitational equations proposed by certain
authors. Hoyle (12), Yilmaz (23), Brans and Dicke (14) have all introduced a
scalar field in General Relativity in addition to the fundamental metric tensor
g - Unlike in Weyl’s geometry the scalar fields that occur in these theories have
no geometrical meaning.

Instead of Einstein’s equations (3.9), Hoyle takes

By — YoguR = —«Tw + (3“0); vy (8.1)

where C is a fundamental scalar field. It serves to give expression to Weyl’s
postulate in cosmology and hence to define the basic cosmological frame. Hoyle
then shows that (8.1) admits the de Sitter metric as a solution if the universal
length of (8,C) is proportional to the curvature of the universe. We note that,
written in the form (3.11) Einstein’s equations have a similar structure to (8.1)
and, as shown in Section IV, they admit the de Sitter solution.

Yilmaz adds to the right hand side of (3.9) a tensor proportional to the energy
momentum tensor of a scalar field ¥, namely

tw = (30) (3h) — 330, (1) (ON). (8.2)
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Our equations (3.11) contain i, as well as additional terms depending on the
scalar field. Both these authors claim that the modified equation throws more
light on Mach’s principle (23, 13).

The theory that the equations (3.11) resemble most is the one proposed by
Brans and Dicke with the specific purpose of incorporating Mach’s principle in
Gieneral Relativity. These authors introduce an additional scalar field ¢ and
couple it to the metric tensor g, by the following heuristic method: they start
from Einstein’s variational prineiple which in our definition (3.8) of R,, reads

5 f (R — (162G/c) LN/ =g d'x = 0, (83)

where L is the Lagrangian for matter. They divide the integral by the gravita-
tional constant (7, then replace G by a scalar field ¢. For consistency, a term
proportional to the Lagrangian of the field ¢ is then added to the integrand. The
variation of the integral thus obtained gives the basic equations of Brans and
Dicke which are very similar to (3.11). An undetermined constant w expresses
the strength of the coupling of the scalar field to the metric tensor.

We first remark that equations almost identical to (3.11) would have heen
obtained by a slight modification of Brans and Dicke’s procedure. Instead of
dividing (8.3) by G we could have divided by  and then replace ("' by ..
adding a term proportional to the Lagrangian of the scalar field. This modified
procedure gives as a new variational principle

8 [ [&'R — ¢(16m/c¢" )L + wle ) (VN =g dr. (&4)

The resulting equations are exactly of the form (3.11) and the two theovies
become identical if we take @ = 6 and impose the condition

vV—g=1 (R.5)
To see that the theory thus obtained is the same as Einstein’s theory, we do not
modify Iinstein’s variational principle (8.3), but simply re-express the integrand
in terms of the tensor density v,, and the sealar density ¢ defined hy (1.5) and
(1.3). From (3.5) we obhtain
R=q¢ '® — (igoA:{Dw)a,cA (8.6
Since we also have

using a Lagrangian density £ similar to expression (4.14) for T, we find

5 f ¢ 7R — 28 — 6¢3D(7)«p]@4 d'v = 0, (8.7
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where « is the constant that appears in (3.9). Remembering the Machian con-
dition that ¢ vanishes at infinity, we can rewrite (8.7) in the form

8 [ 1690 — 208 + 6(0.) (6] % = 0, (8.8)

which is the same as the heuristic Lagrangian in (8.4) with the condition (8.5)
and w = 6, provided we work in the inertial system.

Another remark concerns the equation (5.4). This equation which serves to
determine the scalar field ¢ is truly linear in the conformal approximation, that
is, when the space is almost conformally flat. In theories like the one by Brans
and Dicke, in which a nongeometrical scalar field is superimposed to the metric,
the D’Alembert operator which occurs in an equation such as (5.4) is associated
with the metric g,, so that it is only linear in the weak field approximation when
space is almost flat. In our case (5.4) becomes linear even for large g,, provided
the deviations from the conformally flat structure are small. Thus one of the
difficulties in Brans and Dicke’s theory which is associated with the need to justity
the weak field approximation in a cosmological universe does not exist in our
scheme based on Einstein’s original theory.

It may also be noted that the separation of the metric tensor into a scalar
density ¢ and a tensor density +,, with unit determinant is analogous to the sepa-
ration of the four-vector field into its scalar and vector parts in Sciama’s model
(10, 11). The quantity ¢ which describes the cosmological structure plays a
role similar to that of the time component of Sciama’s four-vector field.

From the standpoint of special relativity our separation corresponds to the
separation of g, into a Minkowski scalar ¢ describing a spin zero field and a
traceless Minkowski tensor h,, associated with the weak deviations of v,, from
the flat metric describing a spin two field. Expressed in terms of the inertial co-
ordinates, Einstein’s theory is cast in a special relativistic form in accordance
with the formulations of Gupta (24), Feynman (25), and Thirring (17).

The interpretation of General Relativity proposed here suggests that quantiza-
tion of General Relativity should lead to two kinds of gravitons, namely, spin
zero gravitons associated with cosmological effects and spin two gravitons giving
rise to gravitational attraction.

IX. CONCLUDING REMARKS

To emphasize the difference between the Machian solution we have obtained
and the standard solution corresponding to the flatness of space at infinity, we
rewrite the de Sitter solution of the Einstein equations (3.9) in the weak gravita-
tional field approximation for a point mass m in empty space. We have

2 2
ds’ = <1 - ';”) ¢ dft — <a“ +En x’%’) da* da. (9.1)
™ ™
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Here « is related to the gravitational constant (7 by the relation,
G = c'x/8m, (0.2)

so that the sign and magnitude of the gravitational foree depend on the value of
the constant x. When space is empty (m = 0), we have

ds’ = n da* de’, 19.3)

that is, the metric of euclidean space.

In our reformulation of Einstein’s theory we have a new solution of (39)
for the gravitational field of a mass point m immersed in a uniform universe with
with total mass M’ and radius of curvation R’. According to (5.2), (6.7), any
(6.8) an approximate expression for the metric is

ds’ = oy, dr* dx’ = wg'y,w dr* dx’, (9.4}

a k& M ')2 R m) 2 .o
(18 o <2‘~Er —R7 1 ()]‘—[/ ;' [ dt .
R max (9.5)
— {8+ 645 = =5 ‘l> et dat .
A

From the form (5.19) of ¢y one may verify that away from matter (r — =), ¢
vanishes so that the metric tensor tends to zero at infinity, unlike the metric
tensor in (9.1) which tends to »,, . Furthermore, since the over-all multiplicative
constant drops out of the equation of motion, we see that the gravitational con-
stant, unlike in (9.2), does not depend on «, but is determined by the cosmological
structure, having the positive value

G = 37R' /M. (9.6)

or

The constant « corresponds to a constant scale transformation of the coordinates

and cannot be measured by studying the motion of a body in a gravitational

field. However, it must be positive to lead to a finite 47". Thus the observed

finiteness of ¢ implies a spatially closed universe. This is in agreement with

Honl’s results (4, 36).

Turning now to the case of an empty universe, from (9.5) we conclude that
lim ds* = 0. (0.7
M’ 50,m->0

Thus, if the curvature of the universe is kept fixed as the universe is depleted of

matter, the gravitational constant grows and the metric disappears, so that there

1s no geometry in empty space. We conclude that Machian boundary conditions

do not allow empty space solutions of Einstein’s equations.
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From (6.18) it follows that the inertial mass of a test particle is also determined
by the cosmological mass distribution and that it also vanishes in an empty
universe.

The foregoing results seem to show that Mach’s principle is indeed incorpo-
rated in Einstein’s equations (3.9). In agreement with Fock’s view (30, 31),
the uniformity of the cosmological background serves to define an inertial co-
ordinate system in which unambiguous boundary conditions can be enunciated.
In accordance with Einstein’s (1, 2) and Wheeler’s (9) expectations, these
boundary conditions lead to solutions which exhibit Mach’s principle.

Another result concerns the time dependence of the gravitational constant.
This follows from the fact that G is proportional to ¢, that is, to a power of
the determinant of the metric tensor. The possibility of a variable @ had already
been exploited in the theories of Milne (27), Dirac (22), Jordan (18), and
Brans and Dicke. The exact time dependence of G is however determined by the
form of the function F in (2.18), which is related to the deviations from the
de Sitter background caused by the presence of stable matter in the universe.

More light is also thrown on the Machian interpretation of centrifugal and
Coriolis forces by the relation (9.6), since Thirring and Lense (3) and others
(2, 7) have shown that this is the relation which allows the interpretation of
inertial forces in a rotating frame as being gravitational forces due to the action
of distant matter. This leads to the complete relativity of rotational motion
(86, 37, 38). ‘

Finally, an important problem that arises from our discussion concerns the
stability and uniqueness of the cosmological structure. We have assumed the
universe to have a de Sitter geometry in the first approximation. This corresponds,
as we have seen, to a background of uniformly spread mass scintillations which
could be interpreted as virtual pairs of massive particles in a quantum field
theoretical picture. In the second approximation, taking the average contribu-
tion of uniformly distributed stable matter into account, we may regard the over-
all geometry of the universe as conformally flat. Repulsive forces between stable
bodies are introduced at this stage. In the third approximation we also allow for
the deviations of the Riemannian geometry from the conformally flat structure
and thus introduce attractive gravitational forces which are superimposed on an
expanding universe. This leads us to question the validity of these successive
approximations to the geometry of space-time. Now, in a conformally flat uni-
verse we have found the relation (9.6) in which, according to (6.13), part of
the total mass M’, namely, Ny comes from stable matter and another part M (0)
from the mass scintillations of the de Sitter background. If our approximation is
a good one, we must have

M(0) > Nup. (9.8)
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According to McVittie’s (39) discussion of recent cosmological data, if we take
as M’ the stable mass in the universe (M (0) = 0), then the equation (9.6) is
off by a factor of about 30. This suggests that

Nu/M(0) = 3%, (9.9)

and thus our approximation seems to be justified in the present state of the uni-
verse. However, 1t remains to be seen if a universe which has an approximately
conformally flat structure and deviates little from a de Sitter space-time will
remain so in the course of the cosmical evolution governed by Einstein’s equa-
tions. Such a study might help us understand whether the remarkable uniformity
of our cosmological background is merely accidental or not. The arguments pre-
sented in this paper seem to require a cosmological background that is con-
formally flat, spatially closed, and spatially uniform for reasonable Machian
solutions to exist. Uniformity with respect to time is not necessary, though con-
venient for calculations. If this is the case, then the de Sitter group should have
no globhal validity. A cosmological structure admitting the 6-parameter group of
an Kinstein space at each instance would be sufficient for the separation of local
and cosmological effects implied by Mach’s principle.
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