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Abstract: Following the footpaths of Lakshmikantham, et. al. [15], and succeeding
by Agarwal et. al. [3], in this article a sincere effort has been made to report
the origin of the Pythagorean Theorem. Out of about 500 known different proofs
of this theorem, we select five which have historical importance. We also discuss
several generalizations of this theorem, and list some antique enduring problems.
We genuinely hope students and teachers of mathematics will appreciate this article.

In (two-dimensional) Euclidean geometry (after Euclid of Alexandria, around
325-265 BC) Pythagorean Theorem, also known as Pythagoras’ Theorem (after Pythago-
ras, around 582-481 BC) states that: If a and b are the lengths of the two legs of
a right triangle, and c¢ is the length of the hypothenuse (Greek word with meaning;:
The side opposite to the right angle), then the sum of the areas of the two squares
on the legs equals the area of the square on the hypotenuse, i.e.,

2B = P (1)

(see Figure 1).

Figure 1
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Pythagorean Theorem is inherent union between geometry and arithmetic, and
serves as the cornerstone of the Euclidean distance formula: If (z1,y1) and (22, y2)
are the Cartesian coordinates (due to René Descartes, 1596-1650) of two points p
and ¢ in a plane, then the Euclidean distance between these points is the length of
the line segment given by

d(p,q) = V(x1—22)%+ (y1 —y2)%.

It is known that the Pythagorean Theorem is equivalent to Parallel Postulate (Eu-
clid’s 5th Axiom in his Elements, about 300 BC): If a straight line meets two straight
lines, so as to make the two interior angles on the same side of it taken together
less than two right angles, these straight lines, being continually produced, shall
at length meet on that side on which are the angles which are less than two right
angles. A Postulate is something whose truth is assumed as part of the study of
a science, and that an Axiom (Greek word meaning something worthy) is a princi-
ple assumed to be true, but cannot be demonstrated. There are signs that Euclid
was not satisfied with this postulate, in the sense that he suspected it might not
be necessary. In fact, this postulate is not self-evident, and hundreds of later at-
tempts by renowned mathematicians to prove the fifth postulate from the earlier
four axioms: 1. A straight line segment may be drawn from any given point to any
other, 2. A straight line may be extended to any finite length, 3. A circle may be
described with any given point as its center and any distance as its radius, 4. All
right angles are congruent; turned out to be wrong or inconclusive. However, many
of them were successful in proving its equivalent, e.g., Proclus Diadochus (410-485):
A line parallel to a given line has a constant distance from it; John Wallis (1616-
1703): There exist similar (but not equal) triangles, whose angles are equal but
whose sides are unequal; The Italian Jesuit Girolamo Saccheri (1667-1733): There
exists at least one rectangle, a quadrangle whose angles are all right angles; John
Playfair (1748-1819): In a plane, given a line and a point not on it, at most one
line parallel to the given line can be drawn through the point (known as Playfair’s
axiom); Adrien-Marie Legendre (1752-1833): A line perpendicular in one arm of an
acute angle also intersects the other arm, also the sum of the angles of a triangle is
equal to two right angles; Karl Friedrich Gauss (1777-1855): There exist triangles
of arbitrarily large area; and the list goes on. Finally, the Parallel Postulate out of
three choices: impossible, meaningless, and improperly posed, was avoided by the
third possibility. This led to a self-consistent geometry, known as non-Euclidean ge-
ometry. In literature the fundamental /elegant relation (equation) (1) is often called
Pythagorean relation (equation). From this relation it is immediate that in any right
triangle, the hypotenuse is greater than any of the other sides, but less than their
sum. Further, if the length of any two sides is known the length of the third side
can be calculated. For a given complex number z = z + iy the absolute value (mod-
ulus) is given by r = |z| = /22 4+ y2, and hence the numbers z,y, and r satisfy the
Pythagorean relation 2 = 22 4+ y2. Here r is a nonnegative number, representing
the distance from the origin to z in the complex plane, but x and y can be negative
numbers. Pythagorean Theorem is familiar (known by heart) to many people who
studied it in High School. According to Johannes Kepler (1571-1630), “Geometry
has two great treasures: one is the theorem of Pythagoras, the other the division of a
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line into extreme and mean ratio (golden section/ratio). The first we may compare
to a measure of gold; the second to a precious jewel,” whereas Charles Lutwidge
Dodgson who used the pen name Lewis Carroll (1832-1898) commented in 1895 “It
is as dazzlingly beautiful now as it was in the day when Pythagoras first discovered
it.” Further appreciating (1), Tobias Dantzig (1884-1956) in 1955 wrote “No other
proposition of geometry has exerted so much influence on so many branches of math-
ematics as has the simple quadratic formula known as the Pythagorean Theorem.
Indeed, much of the history of classical mathematics, and of modern mathematics,
too, could be written around that proposition,” and Jacob Bronowski (1908-1974)
commented “To this day, theorem of Pythagoras remains the most important sin-
gle theorem in the whole of mathematics.” Michio Kaku (born 1947) has reported
“The Pythagorean Theorem, of course, is the foundation of all architecture: every
structure built on this planet is based on it.” In recent years Pythagorean Theorem
has been successfully applied in various branches of mathematics such as discrete,
combinatorial, and computational geometry, e.g., in combinatorics to prove the fa-
mous Sylvester-Gallai-Erdos theorem (after James Joseph Sylvester, 1814-1897; Ti-
bor Gallai, 1912-1992; Paul Erdds, 1913-1996) Pythagorean Theorem has been used:
“Let n points be given in a plane, not all on a line. Join every pair of points by a
line. At least n distinct lines are obtained in this way.” Nicaragua issued a series
of ten stamps commemorating mathematical formulas, including the Pythagorean
Theorem. In a survey in 2004, in the Journal Physical World, (1) ranked fourth place
among the twenty most beautiful equations in science. Undoubtedly, if one has to
select a mathematical theorem which enjoys “perpetual youth” which has a very
long history as well as deep significance unto this day, the Pythagorean Theorem is
a robust nominee. It is of vital importance in problems ranging from carpentry and
navigation to astronomy. Pythagorean Theorem also finds various applications in
discrete, combinatorial, and computational geometry. However, Pythagorean The-
orem horribly mangled by the Scarecrow in The Wizard of Oz. One cannot think
trigonometry without Pythagorean Theorem, since trigonometric (circular, angle,
or goniometric) functions are rather easily defined based on the sides of a right an-
gle triangle. Further, from the relation (1), the trigonometric identities so called
Pythagorean identities cos® 0 +sin?60 = 1, 1+ tan? 6 = sec? 6 and cot? 6 + 1 = csc? 0
are immediate. (The English word sine comes from a series of mistranslations of
the Sanskrit jya-ardha (chord-half). Aryabhatta (born 2765 BC) frequently abbre-
viated this term to jya or its synonym Jiva. When some of the Hindu works were
later translated into Arabic, the word was simply transcribed phonetically into an
otherwise meaningless Arabic word jiba. However, since Arabic is written without
vowels, later writers interpreted the consonants jb as jaib, which means bosom or
breast. In the twelfth century when an Arabic work of trigonometry was translated
into Latin, the translator used the equivalent Latin word sinus, which means almost
meant bosom, and by extension, fold (as a toga over a breast), or a bay or gulf. This
Latin word has now become our English sine. The first abbreviation of sine to sin is
due to Edmund Gunter (1581-1626) in 1624. Similarly, the Sanskrit word kotijya in
English has become cosine. The tangent, cotangent, secant, and cosecant functions
made their appearance in Islamic works in the ninth century, perhaps earliest in
the works of Ahmad ibn Abdallah al-Marwazi Habas al-Hasib (around 770-870) and
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Al-Battani (around 858-929), although the tangent function had already been used
in China in the eighth century. An extensive discussion of these functions is avail-
able in the work of Abu Arrayhan Muhammad ibn Ahmad al-Biruni (973-1048).)
The pictorial representation, Figure 1, of the Pythagorean Theorem is known un-
der many names, for example bride’s chair, Franciscan’s cowl, the goose foot, the
peacock’s tail, the windmill, and the chase of the little married women.

According to one of the fables “Pythagoras discovered his theorem while waiting
in a palace hall to be received by Polycrates. Being bored, Pythagoras studied the
stone square tiling of the floor and imagined the right triangles (half-squares) hidden
in the tiling together with the squares erected over its sides. Having seen that the
area of a square over the hypotenuse is equal to the sum of areas of squares over the
legs, Pythagoras came to think that the same might also be true when the legs have
unequal lengths”. Throughout the history of mathematics it has been claimed that
Pythagoras (which made him immortal) gave first proof of Pythagoras Theorem by
deductive method. However, the earliest known mention of Pythagoras’s name in
connection with the theorem occurred five centuries after his death, in the writings of
Marcus Tullius Cicero (106-43 BC), well known as “Cicerone”, and Plutarch (Lucius
Mestrius Plutarchus, around 46-120). It is very likely that one of the Pythagoreans
(Pythagoras follower) proved the theorem, and as it was common in the ancient
world, particularly in the Asian culture, out of respect for their leader, credited the
proof to his famous teacher. This result has been recorded as the Proposition 47 in
Book I of Euclid’s Elements (A systematic and logical compilation of the works based
on his experience and achievements of his predecessors in the three centuries just
past, consisting 13 books (chapters or parts) with 465 propositions on plane and solid
geometry, and number theory. This work set the trends how mathematics is written
and studied even today. Since 1482, Elements has appeared in more editions than
any work other than Bible, and it has been translated into countless languages.).
In Elements the proposition reads: “In right-angled triangles the square on the side
subtending the right angle is equal to the sum of the squares on the sides containing
the right angle.” Euclid provides two proofs of this proposition, first in Book I
and second in Book VI. Its first proof uses knowledge about congruent triangles,
and although it is not too demanding, many readers are puzzled by the strangeness
of the acquired relations. For this proof philosopher Arthur Schopenhauer (1788-
1860) wrote “the same uncomfortable feeling that we experience after a juggling
trick.” But the well-known 17-th century English philosopher Thomas Hobbes (1588-
1679) who never studied geometry admired this proof. At the age of 40, Hobbes
came across this theorem quite by chance on the page of an opened book while
waiting at his friend’s study. He wondered how it could that be possible. The proof,
however, referred to a previous proposition whose proof in turn refereed to more
preceding propositions. After several hours’ of detailed investigation, he was finally
convinced of the truth of Proposition 47. Hobbes not only finished Book I of Euclid’s
Elements, but started his life-long love for geometry. Denis Henrion (1580-1632) in
1615, comments: “Now it is said that this celebrated and very famous theorem was
discovered by Pythagoras, who was so full of joy at his discovery that, as some say,
he showed his gratitude to the Gods by sacrificing a Hecatomb of oxen. Others
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say he only sacrificed one ox...” But this is nonsense because being a follower of
Lord Gautama Buddha (1887-1807 BC), Pythagoras must have been very scrupulous
about shedding the blood of animals. In fact, Eudoxus of Cnidus (around 400-347
BC) writes “Pythagoras was distinguished by such purity and so avoided killing and
killers that he not only abstained from animal foods, but even kept his distance from
cooks and hunters”.

However, Pythagorean Theorem was certainly known before 4th century BC.
Sulbasutras are extant, named for the sages who wrote them: Baudhayana (born
3200 BC) contains one of the earliest references to this theorem (with a convincing
valid proof): a rope that is stretched across the diagonal of a square produces an
area double the size of the original square. This is a special case of the Pythagorean
Theorem for a 45° right triangle. Egyptian civilizations around 2500 BC used ropes
to measure out distances to form right triangles that were in whole number ratios
(Berlin Papyrus 6619, and pyramids). However, some prominent historians of math-
ematics: Bartel Leendert van der Waerden (1903-1996), Dirk Jan Struik (1894-2000),
and Sir Thomas Little Heath (1861-1940) [14] have suggested that Egyptians had no
knowledge of Pythagorean Theorem. There is a sufficient evidence that Pythagorean
Theorem was known to Mesopotamian (tablet number 7289 in the Babylonian Col-
lection of Yale University famous as “YBC 7289”, and tablet number 322 in the
Babylonian Collection of Columbia University popular as “Plimpton 322”, written
between 1790 and 1750 BC, during the time of the Babylonian king Hammurabi
(around 1811-1750 BC), which was discovered by Edgar James Banks (1866-1945)
shortly after 1900, and sold to George Arthur Plimpton (1855-1936) in 1922, for
$10). Of more mathematical interest is a group of tablets uncovered by the French
at Susa in 1936. These provide some of the oldest Babylonian examples of the use
of the theorem of Pythagoras. One tablet computes the radius r of a circle that cir-
cumscribes an isosceles triangle of sides, 50,50, and 60. The Apastamba Sulbautra
(one of the oldest Dharma-related texts of Hinduism) gives a general statement of
Pythagoras’s theorem: The diagonal of a rectangle produces the sum of what the
largest and the smallest side produce separately. Apastamba was also familiar with
the result that as a special case of this theorem, the diagonal of a square is the side
of a square with twice the area of the original one. The Katyayana, written later,
gives a more general version of the Pythagorean Theorem: a rope that is stretched
along the length of the diagonal of a rectangle produces an area which the vertical
and horizontal sides make together. In other words, the square of the hypotenuse
equals the sum of the squares of the sides. Chinese mathematician Tschou-Gun who
lived in 1100 BC knew the characteristics of the right angle. In Chinese literature
the Pythagorean Theorem is known as Gougu theorem (in Chinese gou means base,
gu stands for shorter leg, and hypotenuse is called xian), and Shang Gao theorem
(named after the Duke of Zhou’s astronomer and mathematician). The theorem
was also known to the Caldeans more than a thousand years before Pythagoras.
Before and after Pythagoras this theorem has been given numerous logically correct
different proofs (almost 500) — possibly the most for any mathematical theorem (sev-
eral false, and with little or no variations, proofs have also been published). These
proofs are very diverse, including both geometric and algebraic proofs, some make
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use of vectors, while others are demonstrations based on physical devices. Some of
these proofs are extremely complicated, while others are astonishingly simple. A
life long project of Elisha Scott Loomis (1852-1940) [16], a mathematics teacher,
was to publish all available demonstrations of Pythagorean Theorem in his book
Pythagorean Proposition in 1927, which was written in 1907 and revised in 1940,
the year of his death. The revised edition contains 371 proofs, a “Pythagorean Cu-
riosity,” “five Pythagorean magic squares” and an extensive bibliography. National
Council of Teachers of Mathematics (Washington, D.C.) republished this book in
1968. According to him “The Pythagorean Theorem is regarded as the most fas-
cinating Theorem of all of Euclid, so much so, that thinkers from all classes and
nationalities, from the aged philosopher in his armchair to the young soldier in the
trenches next to no-man’s land have whiled away hours seeking a new proof of its
truth.” This book includes proofs of those of Leonardo da Vinci, a blind girl Miss
E.A. Coolidge in 1888, a sixteen year old high school student Miss Ann Condit in
1938, and by the United States Representative James Abram Garfield (1831-1881),
5 years before he became the 20th President of the United States in 1881. In his
book, Loomis remarked that in the Middle Ages (5th to the 15th century), it was
required that a student taking Master’s degree in mathematics offer a new and origi-
nal proof of the Pythagorean Theorem; this, he asserts that has resulted several new
proofs. In the Foreword, the author rightly asserts that the number of algebraic
proofs is limitless as is also the number of geometric proofs, but that the propo-
sition admits no trigonometric proof. However, in 2009, Jason Zimba gave a very
clever trigonometric proof, which is followed by more trigonometric proofs by David
Houston and Luc Gheysens. Several Web sites (e.g., see [26]) deal with Pythagorean
Theorem and give fairly decent update of this theorem; however, https://www.cut-
the-knot.org/pythagoras/ found by Alexander Bogomolny (1948-2018) in 1996, is
particularly interesting as it provides 118 different proofs. We also refer to the ad-
ditional information provided in the monograph of Agarwal and Sen [3], and papers
of Siu [22], [23], and Veljan [24].

Converse of Pythagorean Theorem. The converse of Pythagorean Theorem
also holds. Euclid’s Elements (Book I, Proposition 48) reads “If in a triangle the
square on one of the sides equals the sum of the squares on the remaining two sides
of the triangle, then the angle contained by the remaining two sides of the triangle is
right.” Thus, for any three positive numbers a, b and ¢ such that a? 4 b? = ¢?, there
exists a triangle with sides a, b and ¢, and this triangle has a right angle between the
sides of lengths a and b. The proof is by contradiction. Assume that the triangle
has sides a, b, ¢ such that ¢> = a® + b%2. We construct a right triangle with sides a
and b and assume its hypotenuse to be d. But then by the Pythagoras Theorem
a®+b? = d?, and this implies a? +b?> = ¢ = d?, and hence d = ¢. Thus, for both the
triangles all the three sides are equal, and therefore these triangles are congruent.
Since (a, b, d) is a right triangle, the triangle (a, b, ¢) must also be a right triangle.

The above proof requires Pythagorean Theorem; however, using several known
results from geometry the converse has also been proved by Stephen Casey [7] in
2008 (also see the work of Macro [18] in 1973) without employing the Pythagorean
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Theorem. Here we give an ingenious such proof which is due to Douglas Mitchell
[19] in 2009.

H
a2
J
B ac b2
c
a
C 5 A 1 e G
Figure 2

We multiply each side of the triangle ABC by ¢ and use a® + b = ¢2, to obtain a
similar triangle GHI (see Figure 2). Now by SAS (side angle side) theorem ATHJ is
congruent to AABC scaled by the factor a, thus ZHJI = /BCA. Similarly, by SAS
theorem AGIJ is congruent to AABC scaled up by the factor b, so ZIJG = LBCA.
This leads to ZHJI = /BCA = /LIJG and since HJG is a side of AGH1I it follows
that ZHJI + /1JG = w. But, then /BCA = 7/2.

As a consequence of the Pythagorean Theorem’s converse we can determine
whether a triangle is acute, right, or obtuse, as follows: Let ¢ be chosen to be the
longest of the three sides a,b,c¢ and a + b > c¢. Then, the following Ernest Julius
Wilcezynski’s (1876-1932) statements of 1914 hold:

If a® + b? > 2, then the triangle is acute.
If a® + b? = 2, then the triangle is right.
If a® + b? < 2, then the triangle is obtuse.

Edsger Wybe Dijkstra (1930-2002) in [10] combined these statements in the
following relation
sgn (a4 B8 —7) = sgn (a> +b* - &2),

where « is the angle opposite to side a, (8 is the angle opposite to side b,  is the

1 if >0
angle opposite to side ¢, and sgn (z) =< 0 if 2=0
-1 if z<0O.

Hippocrates’s Generalization of Pythagorean Theorem. A nontrivial
generalization of Pythagorean Theorem far off the areas of squares on the three
sides (see Figure 1) to similar figures (figures which are of the same shape, but not
necessarily of the same size, for example, two N-sided polygons are similar if the
ratios of their corresponding sides are all equal) was known to Hippocrates of Chios
(about 470 BC), see Figures 3 and 4 (multiplying relation (1) by =/2, Figure 3
immediately follows). Recall that the area A of a regular polygon is

- 52N
~ 4tan(180/N)’

where S is the length of any side, N is the number of sides, and tan is the tangent
function calculated in degrees. Further, the length of a side s9,, of a 2n-sided regular
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polygon circumscribing a circle of radius 1 in terms of the length of a side s, of an
n-sided circumscribing polygon is

2\/4+s2—4

Sn

S2n —

Archimedes (287-212 BC) used Pythagorean Theorem to obtain this formula, and
employed it to a series of inscribed and circumscribing polygons to compute an
approximate value of 7, he showed that 3%—(1) <m < 3% (R.P. Agarwal, H. Agarwal,
and Sen [2]). Hippocrates’s result is included in Euclid’s Elements in Book VI
as Proposition VI 31. It reads “In right-angled triangles the figure on the side
subtending the right angle is equal to the similar and similarly described figures on
the sides containing the right angle,” (see, Heath 1956). This extension presumes
that the sides of the original triangle are the corresponding sides of the three similar
figures (so the common ratios of sides between the similar figures are a : b : ¢).
Euclid’s proof applies only to convex polygons; however, in 2003, John Frank Putz
and Timothy Sipka [21] have shown that the result also applies to concave polygons
and even to similar figures that have curved boundaries. To show this result for a
simple case we recall that the area of a plane figure is proportional to the square of
any linear dimension, and in particular is proportional to the square of the length
of any side. Now we erect similar figures with areas A, B and C on sides with
corresponding lengths a, b and ¢. Then, it follows that

A B C
2 BT @
which implies
2 b2 2 32
A+ =Lovlo - 0 C ¢
¢ ¢ &

Figure 3
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Figure 4

Conversely, as for the converse of Pythagorean Theorem, if the sides of a triangle
are corresponding parts in three similar figures such that the area of one is the sum
of the areas of the other two, then the triangle is a right triangle.

Reconstructing Figure 3 as Figure 5, we find Hippocrates’s famous result: The
sum of the areas of two lunes is equal to the area of the triangle, i.e., Area of I+
Area of I = Area of A. Encouraged with this result, Hippocrates unsuccessfully
tried to square the circle.

Figure 5

Now we shall give five different proofs (in modern terminology with necessary
changes) of the Pythagorean Theorem, which are fairly easy and have some historical
importance.

Proof 1. Euclid perhaps acknowledging the complications in the proof given in
Book I (Proposition 47), he himself derived (according to Proclus) a simpler proof
in Book VI (Proposition 31). A semi-algebraic version of Euclid’s proof appeared
in Legendre’s textbook Eléments de géométrie in 1794. His book was translated
into English in 1858 by Charles Davis (1798-1876), which became very popular in
America. Davis’s proof is now very popular all over the world: In Figure 6, ZACB
is the right angle. We draw the perpendicular C'D from C on the hypotenuse AB,
so that ZADC and /BDC are right angles. We also note that /DAC = /DCB
(LACD = LDBC). Thus, AADC and ACDB are similar to each other, and both
are similar to AACB. Hence, it follows that AC/AB = AD/AC and BC/AB =
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BD/BC, and therefore AC? = AB x AD and BC? = AB x BD. Finally, adding
these relations, we get

AC? + BC? = AB(AD + BD) = ABx AB = AB”. (2)
c
A B
D
Figure 6

Albert Einstein (1879-1955) when he was 12-year-old succeeded in “proving”
Pythagorean Theorem (without claiming its originality) by using the similarity of
the triangles. However, unfortunately, he left no such record of his childhood proof.
The general consensus among Einstein’s biographers is that he probably rediscovered
Euclid’s proof, or found one of its variants. However, Walter Isaacson (born 1952),
Jeremy Bernstein (born 1929), and Banesh Hoffman (1906-1986) showed some resis-
tance to this conclusion. Ten years later Einstein discovered four dimensional form
of Pythagorean Theorem and used it in his special theory of relativity. After few
years he expanded this theorem further and used it in his study of general relativity.

In Figure 6, we also note that
1 1
Aapc = §AC x BC = §AB x CD,

and hence AB = AC x BC/CD. Using this relation in (2), we find
1 1 1
Acz T Bez T opr ®)

Eli Maor (born 1937) in his book [17] of 2007 calls the relation (3) as the Little
Pythagorean Theorem, but in the literature it is better known as the Reciprocal
Pythagorean Theorem.

Proof 2. In the ancient Chinese text Zhou Bi Suan Jing (The Arithmetical Classic
of the Gnomon and the Circular Paths of Heaven) of Zhou dynasty (1046-256 BC),
there is a passage that gives the following dissection proof of Pythagorean Theorem:
Rotate the given right-angled triangle (ABC) about the center of the square on the
hypotenuse to form triangles FCY, GYX and EXB as in Figure 7.

Then, it is easy to see that

Aarce = AcpHF + ABEMmp +2AaBpc and  Aarce = Apxyc +4AaBc.
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From this, one sees that the area of the square on the hypotenuse (BC) is the sum
of the areas of the squares on the other two sides (AB and CA) of the right-angled
triangle (ABC).

F H Y G

-—M

Figure 7

During the time of the Three Kingdoms (3rd century AD) in China, the Wu
mathematician Zhao Shuang provided a similar proof in his annotation of Zhou Bi
Suan Jing (Figure 8).

Figure 8

Proclus conjectures that the following variation of the Chinese proof by dissection
is due to Pythagoras:
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a b
Figure 9
From the Figure 9 it follows that

c2+4%b = (a+b)? = a*+b* + 2ab,

and hence (1) holds.

Another similar idea was proposed by the Indian Mathematician Bhaskara IT or
Bhaskaracharya (working 486) (Figure 10(a)). It is amusing to note that, besides the
diagram, Bhaskaras proof consists only of a single exclamation: “Behold”! This is
perhaps the first visual proof (a proof without words of an identity or mathematical
statement which can be demonstrated as self-evident by a diagram without any
accompanying explanatory text), for more details of such proofs, see (Nelsen, [20]).
Coolidge’s proof is similar to Bhaskara’s proof.

b
Figure 10(a) Figure 10(b)

Algebraically, from Figures 10 (a) and (b) it follows that
& = 2ab+(b—a)? = a® + 17

Proof 3. From Figure 11 and Hippocrates’s Generalization of Pythagorean The-
orem, (1) is immediate.
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F
Figure 11
This proof was originally given by R.P. Lamy in 1685, which was rediscovered

by Stanley Jashemski in 1934 at the age of nineteen, and then after seventy years
by Eli Maor who calls it as the Folding Bag in his book of 2007.

Proof 4. The following direct proof is due to Garfield. It appeared in 1876 in the
New England Journal of Education. Figure 12 shows three triangles forming half of
a square with sides of length a + b. The angles A, B and D satisfy the relations

A+B = 90° and A+ B+ D = 180°.

R

B A
a b
Figure 12

Thus, D = 90°, and hence all the three triangles are right triangles. The area of the
half square is

1 1
5(a+b)2 = §(a2+2ab+b2),

while the equivalent total area of the three triangles is

1 1 1
Eab + 502 + §ab.

Equating these two expressions, we get

a2 +2ab+b = ab+E+ab or a2+ = A
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Proof 5. We note that Daivajna Varahamihira (working 123 BC) gave several
trigonometric formulae that correspond to sinz = cos(r/2 — z), (1 — cos2z)/2 =
sin? 2, and sin? 24 cos® z = 1, which is the same as the Pythagorean Theorem (Iden-
tity). Here we shall give one of the easiest trigonometric proofs of the Pythagorean
Theorem which was deduced by Edmund Georg Hermann (Yehezkel) Landau (1877-
1938) from the Cosine addition formula

cos(z +y) = coszcosy —sinzsiny. (4)

This formula was known to Bhaskara II. Landau’s proof of (4) is based on infinite
series representations of sin 2 and cos z. From Figure 13, in which ZAFD = 90°, we
have

D
T
C
H F
Y
€L
A = G B
Figure 13
AE AG HF
cos(z +y) = =

AD ~ AD AD
AGAF HFFD
AF AD FD AD
= cosxcosy — sinxsiny.
In (4) we let y = —x, to obtain
cos0 = coszcos(—z) — sinzsin(—z),

which is the same as 1 = cos? z + sin? z. Thus, Pythagorean Identity is hidden in
(4)-

Finally, we note that the relation (4) immediately follows from the formula e
cosf + isinf of Leonhard Euler (1707-1783). In fact, from this formula, we have

0 _

@) = cos(x +y) +isin(z + y)
and
@ty) = ¢meW = (cosx + isinx)(cosy + isiny)
= (coszcosy —sinzsiny) + i(sinz cosy + cos zsiny).

Now comparing the real parts of the above two equations (4) follows.



Pythagorean theorem before and after Pythagoras 371

Now we shall provide various generalizations of the Pythagorean Theorem.

Ptolemy’s generalization of the Pythagorean Theorem. Alexandrian
Claudius Ptolemaeus (around 90-168 AD) known in English as Ptolemy proved that
in any cyclic quadrilateral (vertices all lie on a single circle) ABC'D (see Figure 14)

ABxCD+ BC x DA = AC x BD. (5)

This result appears in his great work Almagest.

D
Figure 14

In Figure 14, F on AC is such that /ABE = /CBD. On BC the angles /BAC =
/BDC and on AB, /ADB = [ACB. Thus, AABEF is similar to ADBC, and
AEBC is similar to AABD. Hence, it follows that

AE DC EC AD
— = — and — = ——,
AB DB BC BD
which are the same as
AE x DB = ABx DC and EC x BD = BC x AD.
An addition of these relations gives

(AE+ EC)x BD = AB x DC + BC x AD.

But, since AE + EC = AC the above relation is the same as (5)
Pythagorean Theorem follows as a special case when ABCD is a rectangle.

Pappus’s generalization of the Pythagorean Theorem. Pappus of
Alexandria (around 290-350) showed that for an arbitrary triangle with arbitrary
parallelograms drawn to its two sides how to construct a parallelogram on the third
side whose area is equal to the sum of the areas of the other two parallelograms.
This extension of Pythagorean Theorem has been of considerable interest, e.g., see
Howard Whitley Eves (1911-2004) in 1958, Eli Maor in 2007, and Claudi Alsina
(born 1952) and Roger Nelsen (born 1942) in 2010.

Let ABC be any triangle, and let ABDE and ACFG be two parallelograms
built on the sides AB and AC, respectively (see Figure 15). Extend DE and FG
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until they intersect at H. Draw BL = CM, each parallel and equal to AH. This
produces the parallelogram BLMC. Pappus’s construction says that

AappE +Aacra = ABLumc- (6)

Figure 15

To show (6) it suffices to notice that the parallelograms ABDFE and ABU H have
the same base length and height, and hence have the same area. A similar argument
holds for the parallelograms ACFG and ACVH, ABUH and BLQR, and ACVH
and RCMQ@. This gives

AaBpE + Aacre = Aapur + Aacve = ABLQr + ArcMo = ABLMC-

ibn Qurra’s generalization of the Pythagorean Theorem. Thabit ibn
Qurra (826-901) in an arbitrary triangle ABC with ZBAC > 90° drew two straight
lines AP and AQ so that ZAPB = LAQC = LBAC, (see Figure 16). Thus, the
triangles ABC, PBA and QAC are similar. Hence, it follows that

A
B P Q ¢
Figure 16
AB PB AC QC
— = — and — = —,
BC AB BC AC

which are the same as

AB?> = BC x PB and AC? = BC x QC.
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An addition of these relations give
AB* 4+ AC? = BC(PB+QQC). (7)

If /BAC = 90°, then the points P and @ are the same, and thus PB + QC = BC.
Hence, in this case (7) reduces to the Pythagorean Theorem.

The Law of Cosines. The law of cosines states that for any triangle ABC, with
sides a, b, ¢ (see Figure 17)

? = a® + b —2abcos C. (8)

The nontrigonometric form of the Law of Cosines is available in Euclid’s Book II
(Propositions 12 and 13): In any triangle, the sum of squares of two sides is equal
to the square of the third side increased by twice the product of the first side with
orthogonal projection of the second to the first side.

If C = /2, then the cosines law (8) reduces to Pythagorean relation (1).

A
c b
[
B D a C
Figure 17

In the triangle AC' D, we have
DC = bcosC and AD = bsinC,
and hence
BD = a—DC = a—bcosC.
Now in the triangle ABD, Pythagorean Theorem and the above relations give
> = BD?*+ AD?> = (a—bcosC)?+ (bsinC)?
= a?+b*(cos? C +sin® C) — 2abcos C
= a2+ b2 —2abcosC.

If in (8), ZC > 90°, then cos C' < 0 which implies ¢? > a? + b?, and if ZC < 90°,
then cos C' > 0 which gives ¢? < a? + b%. Hence, the converse of the Pythagorean
Theorem also follows from the Law of Cosines.

Jemshid al-Kashi (around 1380-1429), a Persian mathematician and astronomer,
provided the first explicit statement of the Law of Cosines in a form suitable for
triangulation. Francois Viéte (1540-1603) popularized this law in the Western world.
Finally, at the beginning of the 19th century, this law was written in its current
symbolic form.
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Pythagorean Theorem in Vector Spaces. We need the following definitions,
see Agarwal and Flaut [4].

A field is a set of scalars, denoted by F’, in which two binary operations, addition
(+), and multiplication () are defined so that the following axioms hold:
Al. Closure property of addition: If a,b € F, then a + b € F.
A2. Commutative property of addition: If a,b € F, then a +b = b+ a.
A3. Associative property of addition: If a,b,c € F, then (a +b) +c=a+ (b+ ¢).
A4. Additive identity: There exists a zero element, denoted by 0, in F such that for
ala€eF, a+0=04+a=ua.
A5, Additive inverse: For each a € F, there is an unique element (—a) € F such
that a + (—a) = (—a) +a = 0.
AG6. Closure property of multiplication: If a,b € F, then a - b € F.
A7. Commutative property of multiplication: If a,b € F, then a-b =15 - a.
A8. Associative property of multiplication: If a,b,c € F, then (a-b)-c=a-(b-c).
A9. Multiplicative identity: There exists a unit element, denoted by 1, in F' such
that foralla € F, a-1=1-a = a.
A10. Multiplicative inverse: For each a € F, a # 0 there is an unique element
ale Fsuchthata-a ' =ala=1.
A1l. Left distributivity: If a,b,c € F, thena-(b+c¢)=a-b+a-c.
A12. Right distributivity: If a,b,c € F, then (a+b)-c=a-c+0b-c.

The set of rational numbers @, the set of real numbers R, and the set of com-
plex numbers C, with the usual definitions of addition and multiplication, are

fields. The set of natural numbers N = {1,2,---}, and the set of all integers
Z={-,-2,-1,0,1,2--- } are not fields.

A wvector space V over a field F denoted as (V,F) is a nonempty set of ele-
ments called vectors together with two binary operations, addition of vectors and
multiplication of vectors by scalars so that the following axioms hold:

B1. Closure property of addition: If u,v € V, then u+v € V.

B2. Commutative property of addition: If u,v € V, then u +v = v + u.

B3. Associativity property of addition: If u,v,w € V, then (u+v)+w = u+ (v+w).
B4. Additive identity: There exists a zero vector, denoted by 0, in V' such that for
alueV, u+0=0+u=u.

B5.  Additive inverse: For each u € V, there exists a vector v in V such that
u+v=wv+u=0.Such a vector v is usually written as —u.

B6. Closure property of multiplication: If v € V and a € F, then the product
a-u=au€V.

B7. If u,v € V and a € F, then a(u + v) = au + av.

B8. If ue V and a,b € F, then (a + b)u = au + bu.

B9. If u e V and a,b € F, then ab(u) = a(bu).
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B10. Multiplication of a vector by a unit scalar: If wu € V and 1 € F, then lu = u.

The spaces (V, R) and (V,C) will be called real and complez vector spaces, re-
spectively.

The n-tuple space. Let F' be a given field. We consider the set V' of all ordered n-
tuples u = (a1, -+ ,ap) of scalars (known as components) a; € F. If v = (b1, ,bp)
is in V, the addition of w and v is defined by w4+ v = (a3 + b1, -+ ,an + by), and the
product of a scalar ¢ € F and vector u € V is defined by cu = (cay, - -, cap). It is to
be remembered that « = v, if and only if, their corresponding components are equal,
ie., a; =b;, i =1,--- ,n. With this definition of addition and scalar multiplication
it is easy to verify all the axioms B1 - B10, and hence this (V, F') is a vector space.
If F = R, then V is denoted as R", which for n = 2 and 3 reduces, respectively, to
the two and three dimensional usual vector spaces. Similarly, if F' = C, then V is
written as C”.

The space of polynomials. Let F be a given field. We consider the set P,, n > 1
of all polynomials of degree at most n — 1, i.e.,

n—1
P, = {a0+a1w—{—~~-+an_11’"—1:Zaiwi:aieF, J;ER}.
i=0

If u = Z?:_ol @b, v = Z?:_ol bz’ € P,, then the addition of vectors « and v is
defined by

n—1 n—1 n—1
utv = Zauf + Z bia! = Z(al + bi)a,
i=0 i=0 =0
and the product of a scalar ¢ € F' and vector u € P, is defined by
n—1 n—1
cu = (;Z az’ = Z(cal)ﬂ
i=0 i=0

This (P,, F) is a vector space. We remark that the set of all polynomials of degree
exactly n — 1 is not a vector space. In fact, if we choose b,_1 = —ay,_1, then u+ v
is a polynomial of degree n — 2.

The space of functions. Let F be a field of complex numbers, and X C F. We
consider the set V' of all functions from the set X to F. The sum of two functions
u,v € V is defined by (u+v), i.e., (u+v)(z) = u(z)+v(z), z € X, and the product of
a scalar ¢ € F and function u € V is defined by cu, i.e., (cu)(z) = cu(zx). This (V| F)
is a vector space. In particular, (C[X], F), where C[X] is the set of all continuous
functions from X to F, with the same vector addition and scalar multiplication is a
vector space.

An inner product on (V,C) is a function that assigns to each pair of vectors
u,v € V a complex number, denoted as (u, v), or simply by u - v, which satisfies the
following axioms:
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Cl. Positive definite property: (u,u) > 0 if u # 0, and (u,u) = 0 if and only if
u=0.
C2. Conjugate symmetric property: (u,v) = (v, u).

C3. Linear property: (ciu + cov,w) = c¢1(u, w) + ca(v, w) for all u,v,w € V and
1,00 € C.

The vector space (V,C') with an inner product is called a complex inner product
space. From C2 we have (u,u) = (u,u) and hence (u,u) must be real. Further,
from C2 and C3 it immediately follows that (w, cu+ cov) = ¢ (w, u) +T2(w, v). The
definition of a real inner product space (V, R) remains the same as above except now
for each pair u,v € V, (u,v) is real, and hence in C2 complex conjugates is omitted.
In (V,C) the angle between the vectors u, v is defined by the relation

Re(u,v)
) 20, o) 77

where Re(u,v) is the real part of (u,v). In (9), the right-hand side lies between —1
and 1 (Cauchy-Schwarz inequality).

(9)

cosf) =

Inner Product in C" and R". Let u = (21, -+ ,zn), v = (w1, - ,wy) € C™. The
standard inner product in C" is defined as

n
(u,v) = z1W1 + -+ + 2pWp, = g 2;W;.

i=1

The vector space C™ with the above inner product is called a unitary space. Similarly,
for u= (a1, ,an), v= (b1, - ,by) € R", the inner product in R" is defined as

(u,v) = a1by + -+ apb, = E:azbZ
i=1

The inner product in R™ is also called dot product and sometimes denoted as u - v.
The vector space R™ with the above inner product is simply called an inner product,
or dot product, or Fuclidean n-space.

Inner Product in C¢la,b] and Crla,b]. For the functions u(t) = f(t) + ig(t)
and v(t) = p(t) +iq(t), t € [a,b] in the vector space of complex-valued continuous
functions C¢[a,b] an inner product is defined as

b
(u,v) = / (F(t) + ig(6) (p(t) — iq(t))dt.

Similarly, for the functions u(t) = ¢(t) and v(t) = ¢(t), t € [a, b] in the vector space
of real-valued continuous functions Cg[a, b] an inner product is defined as

b
(u,v) = / SO (t)dt.

A subset S of an inner product space (V, F) is said to be orthogonal if and only
if for every pair of vectors u,v € S, u # v the inner product (u,v) = 0. From (9)
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two vectors u, v € (V, R) are orthogonal if and only if (u,v) =0, i.e., # = 7/2. Thus,
orthogonality naturally generalizes the geometric concept perpendicular in R?.

A norm (or length) on a vector space (V. F) is a function that assigns to each
vector u € V' a nonnegative real number, denoted as ||u||, which satisfies the following
axioms:

D1. Positive definite property: ||u|| > 0, and |Ju|| = 0 if and only if u =0,
D2. Homogeneity property: ||cu| = |c|||u| for each scalar ¢,
D3. Triangle inequality: ||u + v|| < |lu|| + |[v] for all u,v € V.

A vector space (V) F) with a norm || - || is called a normed linear space, and is
denoted as (V. F, || -||). In what follows we shall use only the Euclidean norm defined
as ||lu|| = (u,u)"?. In the vector space C™ for two vectors u = (z1,--- ,2,), v =
(w1, -+ ,wy) the Euclidean distances is denoted and defined as

. 1/2
lu=vll = (lor = w1+ + |en — w2 = | Y [z — w;?

Similarly, in C¢la, b] for two functions u(t) = f(¢t) +ig(t) and v(t) = p(¢t) +iq(t) the
Euclidean distances is defined as
1/2

b
hu— ol = ( / <|f<t>—p<t>|2+|g<t>—q<t>12>dt)

The subset S is called orthonormal if S is orthogonal and for every @ € S, || =
(a,4) = 1.

The subset S = {u!,u? u3} = {(1 2,0,-1),(5,2,4,9),(-2,2,-3,2)} of R* is
orthogonal The subset Sy = {w1 w?, w? w4} ={(1+44,1,1—4,1), (1+5i,645i, —7—
63, (=T -+ 347, —8 — 230, —10+22i, 30+ 13i), (—2— 4, 6+ 4, 4+ 3i, 6 — )} of C*

is orthogonal. The set S35 = { T \/t cosnx, n=1,2 -- } is orthonormal on 0 <
x < 7w. The set Sy = {\/Esinnz, n=12-- } is orthonormal on 0 < x < 7. The

set S5 = {\/_, \/_cos nx, \/_smru n= 1,2,‘--} is orthonormal on —7 < z < 7.

The set S¢ = {Pn(x), n =0,1,2,---}, where P,(z) is the Legendre polynomial of
degree n defined by (see Agarwal and O’Regan [1])

(5]
o [2n+1 (2n — 2k)! e
) = 2 kZ:O(_l)an K (n—k)! (n— Qk‘)!L *

is orthonormal on —1 < 2 < 1. In particular, we have

Po(z) = % Pi(a) = \/gl Pafa) = /2 5(322 1),

Py(z) = \/2'%(51‘3—31'), Py(x) = \/g 3(351 —302% 4 3).
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We are now in the position to state the following Generalized Pythagorean The-
orem: Let {u',--- ,u"} be an orthogonal subset of an inner product space (V, F).

Then, the following holds

[ul -+ ™2 = P ™) (10)
Indeed, from the definition of inner product and orthogonality of {u!,--- u™}, it
follows that
ful +---+u™P = (@' 4+ +u™), (u 4+ u™))

(ul,ul) + (u u?) 4+ (u ™)

J’— -

+(u™ ub) + (™ u?) 4+ (W™ ™)
(ul,ub) 4+ -+ (™, u™)

[ |2+ -+ lu™].

For m = 3 equation (10) immediately extends Pythagorean relation (1) to rect-
angular solids. Indeed from Figure 18 and Pythagorean Theorem twice it follows

that
A =T
CRE— —3D
p¥==—"" C
Figure 18
|\BD> = |BC|* +|CD|?
and
|AD|*> = |AB> + |BD|*.
Thus, it follows that
|AD> = |AB> + |BC|* + |CD|. (11)

In particular for the vectors BC =

we have 72 = 32 4+ 6% + 22

(6,0,0), BE = CD = (0,2,0) and BA = (0,0, 3),

As further examples, for the vectors in the sets S7 and S, respectively, we have

1(1,2,0,—1) + (5,2,4,9) + (—2,2,-3,2)|| = ||(4,6,1,10)% = 153
= [1(1,2,0,=1)||% + [1(5,2,4,9)|12 + [|(=2,2,—3,2)||2 = 6 + 126 + 21 = 153
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and
lw' +w? +w? + w||> = ||(=7 + 36,5 — 17i, =12 + 234,37 + 7i)||2 = 3750
= [|w!]]? + |w?||? + w3 + | w?|?> = 6+ 174 + 3451 + 119 = 3750.
Clearly in (10) if the set {u',--- 4™} is orthonormal, then it becomes

e = P P = (12)

Thus, for the vectors in the sets S3 and Sg, respectively, we have

/ <—+Z\/jcosk1> dz =m 2
:/07r <%> d;y+kz_;/0ﬂ (@cosk.u) dz=m

1 /m—1 2 m—1 .1
i Xr = 2 xr)ar = m.
/_1<Z Pk(i)) d ;}/_1&( )d

We note that in (10), m can be infinite provided > 52, [[u*||? converges (finite).
For this, as an example we note that the set S; = {\/%%, n= 1,2,~~} is

orthogonal on 0 < z < 7, and we have

2
" (=~ [2sinka — 1 7
(;,/; 3 Z,;/ Josinke | do = Y-

In the literature finding the sum of the series > 30, 1/k? is known as Basel
problem. It was posed by Pietro Mengoli (1625-1686) in 1650 and solved by Euler
in 1734.

and

Another generalization of Pythagorean Theorem in inner product spaces is known
as Parallelogram Law: For any pair of vectors u, v in an inner product space (V, F),

[+ oll3 + llu = ol5 = 2ull3 + 2[l]I3, (13)

i.e., the sum of the squares of the lengths of the four sides of a parallelogram equals
the sum of the squares of the lengths of the two diagonals.

D C

u

Figure 19
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In R? from Figure 19, the relation (13) is the same as
|AC|? + |DBJ* = 2|AB|* +2|BC)?,
which for a rectangle is the same as (1).

De Gua’s Theorem. In the year 1783, Jean Paul de Gua de Malves (1713-1785)
showed that given three right triangles with leg lengths such that we can form a
tetrahedron, the sum of the squares of the areas of the three right triangles is equal
to the square of the area of the base. From Figure 20 it means that

Alpe = Alpo + Ahco + Abco- (14)

A

B
Figure 20

To show the relation (14) algebraically, in 2017 Hartzer [13] cleverly used the
formula A = /s(s —a)(s — b)(s — ¢), where s = (a + b+ ¢)/2 and A is the area
of the triangle with sides a,b, and ¢. This formula is originally due to Bhaskara I
(before 123 BC), but known in the literature as Heron’s formula (about 75 AD).
Substituting s in the formula of A and squaring, we find

2(a®? + a’? + 0*?) — (' + " + )
16 '

Now let d = OA, e= 0B, f =0C, and a = AB, b = BC, ¢ = CA. Then by the
Pythagorean Theorem three times, it follows that

A% =

=P+ V=l F=+d

and now these relations give

s PEFPE+ER (de\ | (fd\? | (ef\’
o i - (3)+(5)+(5)

which is the same as (14).

Around the same year 1783, De Gua proved his theorem, a slightly more gen-
eral version was published by Charles de Tinseau d’Amondans (1746-1818). This
theorem was also known much earlier to Johann Faulhaber (1580-1635) and René
Descartes (1596-1650). We now state a result which was proved in 1974 which is a
far reaching generalization of De Gua’s theorem.

Conant and Beyer’s Theorem. [9] Let U be a measurable subset of an n-
dimensional affine subset of R™, n < m. For any subset I C {1,---,m} with
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exactly n elements, let U; be the orthogonal projection of U onto the linear span
of ¢, ... e where I = {i1,--- ,in} and e!,--- ™ is the standard basis for R™.
Then,

vola () = Y vola (Uy), (15)
I

where vol,,(U) is the n-dimensional volume of U and the sum is over all subsets
IC{l,---,m} with exactly n elements.

Next, we state a theorem of Eisso Atzema [6] which he proved in 2000 for m X n
matrices, where n < m. In the year 2010 Charles Frohman [11] used a different
method to prove Atzema’s result, which is more transparent. Related results also
established by Sergio Alvarez [5] in 2018 and Willie Wong [25] in 2002.

Atzema’s Theorem. For an m x n, n < m matrix A the following relation holds

det(A'A) = > det(Ag)?, (16)
Ic{1,-,;m} |I|=n

where A’ is the transpose of A, |I| represents the cardinality of I, A; denotes the
n X n matrix made from the rows of A corresponding to the subset I, and the
summation is taken on all possible combinations I.

As (15) the relation (16) geometrically can be interpreted as follows: the square
of the content of the parallelepiped spanned by A is equal to the sum of the squares
of the orthogonal projections of the parallelepiped into the n-dimensional coordinate
hyperplanes.

To illustrate the relation (16) we consider the matrix

11 2
12 3
A= 1 3 4
349
for which the left hand side is
12 18 36
|A'A| = | 18 30 56 | = 24
36 56 110
and the right side is
112 (123 1122 |11 2]
1 2 3| 4+|13 4] +|1 34| +[1 2 3| =02+22+42422=-24.
1 3 4 349 349 349

Relation Between Cross and Inner Products. Recall that in R? the cross
product between two vectors u and v is a vector w denoted and defined as

w = uxv = |u]lv](n)siné; (17)
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here, 0° < @ < 180° is the angle between « and v in the plane P containing them,
and (n) is a unit vector perpendicular to the plane P in the direction given by the
right-hand rule. It is clear that w is orthogonal to both v and v, and if v and v are
parallel, then the angle § is either 0° or 180°.

Now inner product between u and v from (9) can be written as
(u,v) = |lullllv]|cos 6. (18)

Squaring and adding both sides of (17) and (18), and using the Pythagorean
Identity sin? § + cos? # = 1, we have the following relation

llu > ]+ (u,0)* = [lul®||o]|*. (19)

Inner and cross products were introduced in 1881 by Josiah Willard Gibbs (1839-
1903), and independently by Oliver Heaviside (1850-1925).

Pythagorean Theorem in Non-Euclidean Geometry. To draw parallel
lines from a point P not on a line ¢ there are several possibilities:

1. There is one and only one parallel line through P. This statement is equivalent
to the Parallel Postulate and leads to the Euclidean geometry.

2. There is no parallel line through P. This possibility leads to a non-Euclidean
geometry known as spherical geometry (which is crucial in navigation by sea). As
an example, we can consider the geometry of the surface of the earth or the celestial
sphere. A line on a sphere is the shortest distance between two points on the sphere.
If a line is extended, it forms a great circle. A great circle, is the end of the lines
path. A great circle revolves around the entire sphere with its radius as the radius
of the sphere. There are infinitely many great circles on a sphere. The points
which are exactly opposite of each other on the sphere, such as poles, are called
antipodal points. Thus, two great circles will always cross paths at antipodal points.
In spherical geometry, angles are defined between great circles, and a triangle is
formed by three great circles intersecting. It is clear that in spherical geometry the
sum of the interior angles of a triangle always lies between 180° and 540°. Further,
the size of an angle increases according as the size of the triangle increases. In
antiquity, in India, several astronomical rules for spherical triangles were discovered
that are scattered all over ancient astronomical texts such as Surya Siddhanta and
its commentaries. For example, on a sphere of radius R the spherical law of cosine

is given as
cos (%) = cos (%) cos (%) + sin (%) sin (%) cos C, (20)

where A, B, C are the angles of a spherical triangle, of which the opposite sides are
a,b, and ¢, respectively (see Figure 21).
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Figure 21

If /C is a right angle, then spherical law of cosine (20) reduces to

c a b
oS (E) = cos (E) cos <§> , (21)
which is the same as
) L - ) i ) i . ) i ) i
sind (577) = sin® () +sin? (57 ) — 2500 (5 s ()
Thus, in view of sin? § = 6% — O(#*) for small §; here, the symbol O

is due to Edmund Georg Hermann (Yehezkel) Landau (1877-1938
large R that

Ga) o)) = G0 () + (30) -0 ()

—

called “big-O”)
, it follows for

g

which is the same as

ol = G+ (o) +o((3R) ) = =

Hence, we find
1
c2=u2+b2+()<ﬁ> as R — oo. (22)
Thus, in the limit, we get back the Pythagorean Relation (1) as the radius R of the
sphere tends to infinity.

3. There are more than one parallel lines through P. This possibility leads to the
sum of angles in a triangle less than 180 degrees. This branch of geometry was
invented by Nicolai Ivanovich Lobachevsky (1792-1856) in 1826, and later in the
year 1831 by Janos Bolyai (1802-1860). However, Karl Friedrich Gauss (1777-1855)
had anticipated this non-Euclidean geometry more than 30 years before Bolyai, but
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Gauss withheld it from publication. A modern use of this geometry known as hy-
perbolic geometry is in the theory of special relativity. Hyperbolic law of cosines was
first known to Franz Adolph Taurinus (1794-1874) in 1826, and then Lobachevsky
in 1830. Here for this law we shall need the following representation which Jane
Gilman [12] has presented in 1995.

cosh (%) = cosh (%) cosh <%) — sinh (%) sinh (%) cos C. (23)

Here A, B, C are the angles of a hyperbolic triangle, of which the opposite sides are
a,b, and ¢, respectively, and —1/K? is the Gaussian curvature (see Figure 22).

Figure 22

If /C is a right angle, then hyperbolic law of cosine (23) reduces to

cosh (1) = cosh () eosh (). 24)

which is the same as

: b b
sinh? (%) = sinh? (%) + sinh? <ﬁ> + 2sinh? (%) sinh? <ﬁ> .
Thus, in view of sinh? § = 62 + O(4*) for small 6, it follows for large K that

1
& = a2+b2+()<ﬁ> as K — oo. (25)

Thus, in the limit, we get back the Pythagorean Relation (1) as K tends to infinity.

4. Elliptic geometry is an another example of non-Euclidian geometry. In elliptic
geometry all lines perpendicular to one side of a given line intersect at a single
point called the absolute pole of that line. The perpendiculars on the other side
of the given line also intersect at a point. However, unlike in spherical geometry,
the poles on either side are the same. Elliptic geometry is also sometimes called
Riemannian geometry after George Friedrich Bernhard Riemann (1826-1866). In
elliptic geometry also the sum of the interior angles of a triangle is greater than
180°. The Pythagorean Theorem fails in elliptic geometry. For this, on a sphere of
radius R consider a spherical triangle with three right angles A = B = C = 7/2,
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and sides a, b, ¢, as in Figure 23. Since the arc length of each side is L = R, where
6 is the angle from the origin to each endpoint of the arc, it follows that L, = RA =
Rr/2,Ly = RB = Rrn/2,L. = RC = Rr/2, where L, represents the length of side
a. If we assume that (1) holds, and as usual let a and b be the sides of the right
triangle and ¢ be the hypotenuse, then we must have (R7/2)? + (R7/2)? = (Rm/2)?,
which leads to a contradiction.

Figure 23

5. Riemannian geometry is a very broad and abstract generalization of the differ-
ential geometry of surfaces. It enabled the formulation of Einstein’s general the-
ory of relativity. In particular, in n-dimensional space V' on an infinitesimal level
Pythagorean Theorem takes the following quadratic form (Riemann introduced this
in his doctoral address in 1854, also see Tai Chow [8])

n
ds* = Y gijdridaj; (26)
ij
here, ds is the line element (the differential of arc length) in V, g;; is the matrix
tensor, and (dx1, - - - , dz,) are the components of the vector separating the two pints.
For the rectangular coordinates, we have (dx1,dzs, dxs) = (dz, dy, dz), and
1 00
gij = 010
0 01

so that (26) reduces to
ds® = da® + dy* + d2°.

Similarly, for the spherical coordinates we have (dx1,dxs, dxs) = (dr,df, d¢), and

1 0 0
9ij = 0 7'2 0
0 0 r2sin®6

so that (26) becomes
ds® = dr? +1r2do* + r?sin® 0do?.
Pythagorean Theorem Problems. We conclude this article with the following

interesting problems which require Pythagorean Theorem. These problems are of
historical importance.
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1. A bamboo 36 cubits tall is broken (bent) by the wind so that the top touches
the ground 12 cubits from the stem. Tell the height of the break. (Babylonia and
China) [The height of the break is 16 cubits.]

2. In a pond, the flower of a water lily is 2 cubits (cubit was a linear measurement
from one’s elbow to the tip of the longest (middle) finger, usually 17 to 21 inches)
above the water. When it is bent by a gentle breeze, it touches the water at a
distance of 4 cubits. Tell the depth of the water. (China) [The depth of the water
is 3 cubits.]

3. A chain suspended from an upright post has a length of 9 cubits lying on the
ground. When stretched out to its full length so as to just touch the ground, the end
is found to be 21 cubits from the post. What is the length of the chain? (China)
[The length of the chain is 29 cubits.]

4. A snake’s hole is at the foot of a pillar which is 24 cubits high with a peacock
perched on its summit. Seeing the snake at a distance of 48 cubits gliding toward its
hole, the peacock pounces on it. Say quickly (perhaps means mentally) now at how
many cubits from the snake’s hole they meet, both proceeding an equal distance.
(India) [They meet 18 cubits from the hole.]

5. Two magicians live on a cliff of height 40 cubits. There is a stream at a distance
of 120 cubits from the foot of the cliff. One magician climbs down and walks to the
stream. The other levitates directly up a short distance and then directly to the
stream. If both magicians travel the same distance, tell how high the second one
flies. (India) [The magician flies 24 cubits high.]

6. The height of a door (say, x) is 6 chi 8 cun (say, a) greater than its width (say,
y) and that the opposite corners are 1 zhang (say, d) apart. Find the height and the
width of the door. (China) [z = 1(a + v2d2 — a?), y = 3(—a + V242 — d?)]

7. Find the area of the following pointed field whose sides and one diagonal are
labeled as in Figure 24.

Figure 24
Using Pythagorean Theorem the area of the lower triangle is given by B = (¢/2)

xy/b? — (¢/2)? and that of the upper triangle by A = (¢/2)\/a? — (¢/2)2. Then the
area z of the entire field is given by x = A + B. It follows that x satisfies the fourth
degree polynomial equation —z*+2(A%+ B%)2? — (A2~ B?)? = 0. If a = 39, b = 25,
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and ¢ = 30 this equation becomes
—21 4 763,2002% — 40,642, 560,000 = 0. (27)

Ch’in Chiu-Shao (around 1202-1261) in his book Mathematical Treatise in Nine
Sections (1247), solved polynomial equations up to tenth degree, particularly, he
found a root of (27) as 2 = 840 by using the method fan fa which is now known as
Horner’s method (William George Horner 1786-1837, this method was also known
to Viéte in 1600). The other three roots of (27) are —840,240, —240, but for this
geometric problem only the solution 840 is meaningful.

8. Chinese mathematician Chu Shih-Chieh (1249-1314) in his book Precious Mirror
of the Four Elements (1303) considered the following problem: “Given that the
length of the diameter of a circle inscribed in a right triangle multiplied by the
product of the lengths of the two legs equals 24, and the length of the vertical leg
added to the length of the hypotenuse equals 9, what is the length of the horizontal
leg?” For this, let a stand for the vertical leg, b the horizontal leg, ¢ the hypotenuse,
and d the diameter of the circle (see Figure 25). The problem can be translated into

the two equations
dab = 24 and a+c¢ = 9.

Chu in addition assumed the two known equations
a4+ =& and d=b—(c—a),

where the second gives the relationship between the diameter of the inscribed circle
and the lengths of the sides of the triangle. From b = ¢2 — a® = (¢ — a)(c + a)
and ¢+ a = 9, we conclude that b = 9(c — a). Next, we multiply the equation
(c+a) —(c—a) =2a by 9 to get 9(c+ a) — 9(c — a) = 18a. Thus, it follows that
81 — b? = 18a and

18ab = 81b—b>. (28)

Now we multiply d = b — (¢ —a) by 9 to get 9d = 9b — 9(c — a), or
9d = 9b—b*. (29)
Multiplying together equations (28) and (29) gives
162dab = 729b% — 816° — 9b* + b°.
Because dab = 24, Chu had to solve the fifth degree equation in b:
b7 — 9b* — 816 + 7290* — 3888 = 0.

However, he did not illustrate his method of solution, Chu merely wrote that b = 3.
The other approximate values of b are 10.367, 6.6143, — 8.8439, and —2.1372.
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b
Figure 25
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