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(M, w) compact symplectic manifold. Almost complex structure J
is compatible with w if w(-, J-) is a Riemannian metric. The space
of compatible almost complex structures AC,, is an infinite
dimensional K&hler manifold.

(M,w, J) is almost Kahler manifold, J € AC,,, and is a Kahler
manifold if J is integrable, ACL.

ACL ¢ Ac,

The Hamiltonian group G of (M, w) acts by holomorphic isometries.

Moment map

The scalar curvature is the moment map for G acting on AC,,. (A.
Fujiki '92, S. Donaldson '94)

w: AC, — C3°(M)
wlJ)=5-3S



Abstract
(M,w, Jo) cscK with isometry group K.

Finite dimensional slice
There is a ball B C H! in the Kuranishi space and a section,

through Jo '
®: B — AC,

So that p restricts to
v:(B,Q)—¢

moment map for action of K on (B, Q). (G Székelyhidi, T. Brénnle
2010)



Abstract
(M,w, Jo) cscK with isometry group K.

Finite dimensional slice
There is a ball B C A in the Kuranishi space and a section,
through Jo

®:B— AC,

So that p restricts to
v:(B,Q)—¢

moment map for action of K on (B, Q). (G Székelyhidi, T. Brénnle
2010)

Theorem
Let J = ®(x) for x € B. Then (M, J) admits a cscK metric in the
Kahler class [w] € H?>(M,R) if and only if the orbit K - x C B is

polystable.

This is due to G Székelyhidi, T. Brénnle 2010, but with gaps in
argument.



Applications

Some applications of the results.

» Study of deformations of constant scalar curvature Kahler
metrics, Sasakian metrics, and Higgs bundles (C. Tippler, C.
van Coevering, S. Simanca, Y. Fan)

» Proof that small complex deformations of cscK metrics have
K-energy bounded below. (V. Tosatti)

» Slice theorem has been used to construct (course) moduli of
cscK metrics, as a complex analytic space (R. Dervan, P.
Naumann)

» Moduli space of constant scalar curvature Sasakian metrics (C.
van Coevering)
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A Kahler manifold is a complex manifold (M, J) with an Hermitian
metric g compatible with the complex structure:

g is Kahler if
» Almost Hermitian: g(J-,J-) = g(-, ).
» J parallel: VJ =0, where V Levi-Civita connection.

An Hermitian metric g on a complex manifold (M, J) is Kahler if
and only if w(-,-) := g(J-,") is closed, dw = 0.

The Kahler form w is a type (1, 1) symplectic form.

The Kahler manifold can be denoted (M, J,w) with

g(‘? ) = w('? J)

If J is merely an almost complex structure then (M, J,w), dw =0,
is an almost Kahler manifold.



Examples
Examples are abundant.

> Any algebraic manifold M ¢ CPV. The Fubini Study metric
on CPN restricts to a Kahler metric.

» A complex torus M = C"/A, Ais a lattice of rank 2n, has the
flat Kahler metric.

» Not all examples are algebraic: A compact complex manifold
M is algebraic if and only if it admits a Kahler form w with

[w] € H?(M,Z). Then w € c1(L) for an ample holomorphic
line bundle L.



Examples
Examples are abundant.

> Any algebraic manifold M ¢ CPV. The Fubini Study metric
on CPN restricts to a Kahler metric.

» A complex torus M = C"/A, Ais a lattice of rank 2n, has the
flat Kahler metric.

» Not all examples are algebraic: A compact complex manifold
M is algebraic if and only if it admits a Kahler form w with
[w] € H?(M,Z). Then w € c1(L) for an ample holomorphic
line bundle L.
Kodaira embedding

Let L be an ample line bundle on M, then

et M IP’(HO(I\/I,O(L’))*)

is an embedding for r >> 1.

» In the algebraic case M is “polarized” by L, (M, L). But in
general [w] € H?(M,R) is an irrational class.
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d0-lemma
If w1 € [wo] another Kahler form in the same cohomology class then

w1 —wp = V—190f, for some f € C°(M).

Kihler metrics on (M, J) in a fixed Kahler class [w] € H?(M, R)
are parametrized by potential functions f € C*>°(M).

Ricci curvature
The Ricci curvature of the metric g has a simple expression on
Kahler manifolds:
» The Ricci form p(-,-) := Ric(J-,-) is the (1,1) form associated
to Ric.
> p= \/——lgalog(det WaB)' where in local coordinates

w=+v-1 w,zdz% A dzP.
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Curvature

Definition
(M, J, g) is Kahler-Einstein if

Ric = \g

for a constant \.
Since [p] € 2mc1(M), we have A[w] = 2mci(M).
Kahler-Einstein problem
Let Ky = A"OTM be the canonical bundle.
> (A <0) Ky is ample, [w] = 2%c;(M). (Solved S.-T. Yau, T.
Aubin, 1976)

» (A =0) (M) = 0. Existence follows from Yau's solution to
the Calabi conjecture. (Solved by S.-T. Yau, 1977)

> (A>0) K,;,l is ample, so (M, J) is Fano. Existence of of K-E
metric proved to by equivalent to K-polystability of (M, K,\jll)
(X. Chen, S. Donaldson, S. Sun 2012, also G. Tian 2012)
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cscK
The scalar curvature S = g®# Ric,z can be expressed

Sw"=npAw"t

A constant scalar curvature Kahler metric (cscK) satisfies
$=S

where

_ 1 1 .
S:Vol(l\/l)/(n—l)!p/\w 1

_ o] -

[w]”

Yau-Tian-Donaldson Conjecture

A polarized complex manifold (M, L) should admit a cscK metric in
the class ci(L) if and only if (M, L) is K-polystable.



cscK

One can extend the conjecture to consider Kahler manifolds
(M, «) polarized with a possibly irrational Kahler class
a € H*(M,R). (Z. Sjéstrom Dyrefelt 2017)

The Kaher-Einstein case was proved by X. Chen, S.
Donaldson, S. Sun 2012, see also G. Tian 2012.

The “only if" part has been proved. (J. Stoppa '08; R. Berman
'13; R. Berman, T. Darvas, C. Lu '16)

For the rest of the conjecture it has been proved that existence
of cscK is equivalent to an analytic stability condition,
convexity of a Kempf-Ness functional, K-energy. ( X. Chen, J.
Cheng '18)
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Fix a compact symplectic manifold (M, w). AC,, is the space of
almost complex structures J compatible with w:

w(IX,JY) = w(X, Y)
w(X,JX) >0, for X #0

AC! c AC,,
is the subvariety of integrable complex structures, Nijenhuis tensor
vanishes, N; =0

AC,, infinite dimensional Kahler manifold

» The tangent space T,AC,, consists of A € End(TM) with
JA=—-AJ and w(AX,Y)+w(X,AY)=0
» AC,, has a complex structure J:

JA=J0 A
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Space of metrics

> Fix Jo € AC,,. Let End(TM, Jp)s be all tensors 1 € End(TM)
1. Joopu=—pod,
2. p is symmetric with respect to g,
3. 1—pou>0
Then

End(TM, _/0)5 — ACw
s Jo(1—p) (14 )t

is a complex analytic chart.
» The Kihler metric is given by

wn

G(AB)=; / tr(AB) -

n!

with the Kahler form

n

Q(A,B) = ;/tr(JAB) -~
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Moment map

Let G C Symp(w) be the group of Hamiltonian diffeomorphisms;
G acts on (AC,,, J, Q) by holomorphic isometries.

Theorem (' A. Fukiki '92, S. Donaldson '94)

The action of G on AC,, is hamiltonian with moment map

p ACy — C°(M)

u(J)=5,-5

S is the scalar curvature of the Chern connection, the usual scalar
curvature when J integrable.
The Lie algebra of G is C§°(M), hamiltonian functions.
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Moment map
For H € C°°(M) the hamiltonian vector field Xy is defined by

dH = Xy sw
The infinitesimal action of C3°(M)
P: (M) — T,AC,

P(H) = Lx,J

The derivative of S is

Q: TJAC, — C°(M)

[t being a moment map means

(Q(a), H)12 = Q(a, P(H))
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Kahler classes

The hamiltonian group G has no complexification, but we can still
describe the orbits of G* on integrable J € AC' . Extend

P C(M,C) — T,AC,

Jo, J1 are in the same “orbit” of GC if there is a path
¢r € C§°(M,C) and J; € AC,, joining Jo, )1

d

aJt = Pt(¢t)

There is an f € Diff(M) with f*J; = Jy and

f*h=Jy and ffw=w+V—190¢

The orbit of GC is essentially the Kahler class of ([w], Jo)

{w + V1006 | ¢ € CF(M), w+ /1096 > 0}
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Deformation complex

We need a Kuranishi space for the deformations of Jy € AC/,
modulo GC.
The infinitesimal action of G is given by

P: CS°(M,C) — T,ACH

We also have B .
9 : TAC, — Q%?(TH?)

Let E2 be the kernel of
/\0,2 ® Tl,O ~ /\0,2 ® /\0,1 N /\3
Define B2 = F(Ez).
We have the elliptic complex
cem,c) B 140t & B2 s

and 5 _ B
A = {a € THAC,|IP a = 0o = 0}
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Slice Theorem

Theorem )
There is a ball B C H' around the origin and a K-equivariant map

¢:B— AC,

such that the G orbit of every integrable J near Jy intersects the
image of ®. If x and x" are in the same KC orbit, ®(x) integrable,
then ®(x), d(x') are in same G© orbit. And moment map restricts
to p: AC,, — C§°(M)

w:(B,Q) — ¢t

First, by modification of Kuranishi's argument we get a
K-equivariant map

¢1 . Bl — ACW
We must perturb ®; to cancel out the £+ portion of p

Lot = (M),
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Slice Theorem

Let U C C5°(M) be a neighborhood of 0 so that if ¢ € U
wr = w + tdd®¢, is Kahler for t € [0,1]

Define t-varying vector field X; by

Xt dWs = dc¢
Define f; € Diff(M) by integrating X;. We have fj*w; = w and
define

F((b, J) - f]_*J
And

fi (4w +dd¢) = (F(¢,J),w)
Note that if ¢ € L2 then F(¢,J) € L3 _,
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Slice Theorem

Let V C £ be a small ball. Define map

G: BixV — ¢t
(x;0) = NS(F(), ®1(x))

where M : C§° — €1 is the projection.
Differential at origin
DGy : &= — &F
DG0y¢ = P*P(¥)
is the restriction of a 4-th order elliptic operator.

But if ¢ € L2 then G(x,¢) € L3 ., so there is no hope of using the
Banach implicit function theorem.
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Nash-Moser theorem

We need the Nash-Moser Implicit Function Theorem.
(R. Hamilton, Bull. A.M.S. Vol. 7, No. 1, 1982 )

We note that G is a smooth map of Fréchet spaces. Further, it is a
smooth tame map. The Nash-Moser theorem is applicable if

DGy gy : &5 — £F

has a smooth tame inverse for (x, ¢) in a neighborhood of (0,0).
This follows from the fact that DG ) is elliptic, Fredholm theory,
and results in (Hamilton ‘82 ).
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Finite dimensional GIT

Proposition
After possibly shrinking B, suppose v € B is polystable for the K€
action on H'. Then there is vy € B in the KC-orbit of v with
1(vo) = 0.
Let

v:HY ¢
be the moment map for the flat Kahler structure (Qo,J) on H*.
The Taylor series gives

2 g2

EF t:(]u(tv) + O(t3)

pu(tv) = p(0) + tdpuo(v) +

We have . = 0 and dug = 0.



Finite dimensional GIT

It is straight forward that

d2

@,u,(tx) o 2u(x).
So

p(tx) = v(tx) + O(t3)



Finite dimensional GIT

It is straight forward that
d2
@,u,(tx) o 2u(x).

So
p(tx) = v(tx) + O(t3)

One shows that if x is polystable iff ||(x)|| has a minimum on
KC-orbit. Then after possibly shrinking B, ||(x)|| has a minimum
x" which must have p(x’) = 0.
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K-polystability
K-polystability is defined in terms of 1-parameter degenerations,
test configurations. A test configuration for (M, L) is a flat
C*-equivariant family
m:x —C

with £ a relatively ample bundle on x and (x:, £¢+) = (M, L") for
t#0.

The Donaldson-Futaki invariant DF(x, £) is a weight defined by
Hilbert polynomials on the central fiber (o, £) with its C*-action.
Definition

(M, L) is K-polystable if DF(x, L) > 0 for all test configurations.
And if DF(x, L) = 0 for a test configuration with normal total
space, x = M x C.

Theorem

Let (M, Jo,w) be cscK. Let J € AC., be a nearby Kihler structure.
If (M, J) is K-polystable then it admits a cscK metric

(M, J,w+ dd°¢).



K-polystability

If (M, J) is K-polystable then its G& orbit must intersect the slice

in a polystable orbit.
Otherwise, using the finite dimensional GIT picture, one constructs

a (smooth) degeneration
m.x = C

where the central fiber xo admits a cscK metric. Thus
DF(x, £) =0, but y is not a product.



Thank You
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