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Abstract
(M, ω) compact symplectic manifold. Almost complex structure J
is compatible with ω if ω(·, J·) is a Riemannian metric. The space
of compatible almost complex structures ACω is an infinite
dimensional Kähler manifold.

(M, ω, J) is almost Kähler manifold, J ∈ ACω, and is a Kähler
manifold if J is integrable, AC iω.

AC iω ⊂ ACω
The Hamiltonian group G of (M, ω) acts by holomorphic isometries.

Moment map
The scalar curvature is the moment map for G acting on ACω. (A.
Fujiki ’92, S. Donaldson ’94)

µ : ACω → C∞0 (M)

µ(J) = S − S
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Abstract
(M, ω, J0) cscK with isometry group K .

Finite dimensional slice
There is a ball B ⊂ H̃1 in the Kuranishi space and a section,
through J0

Φ : B → AC iω
So that µ restricts to

ν : (B,Ω)→ k∗

moment map for action of K on (B,Ω). (G Székelyhidi, T. Brönnle
2010)

Theorem
Let J = Φ(x) for x ∈ B . Then (M, J) admits a cscK metric in the
Kähler class [ω] ∈ H2(M,R) if and only if the orbit KC · x ⊂ B is
polystable.
This is due to G Székelyhidi, T. Brönnle 2010, but with gaps in
argument.
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Applications

Some applications of the results.
I Study of deformations of constant scalar curvature Kähler

metrics, Sasakian metrics, and Higgs bundles (C. Tippler, C.
van Coevering, S. Simanca, Y. Fan)

I Proof that small complex deformations of cscK metrics have
K-energy bounded below. (V. Tosatti)

I Slice theorem has been used to construct (course) moduli of
cscK metrics, as a complex analytic space (R. Dervan, P.
Naumann)

I Moduli space of constant scalar curvature Sasakian metrics (C.
van Coevering)



Kähler geometry

A Kähler manifold is a complex manifold (M, J) with an Hermitian
metric g compatible with the complex structure:

g is Kähler if
I Almost Hermitian: g(J·, J·) = g(·, ·).
I J parallel: ∇J = 0, where ∇ Levi-Civita connection.

An Hermitian metric g on a complex manifold (M, J) is Kähler if
and only if ω(·, ·) := g(J·, ·) is closed, dω = 0.
The Kähler form ω is a type (1, 1) symplectic form.
The Kähler manifold can be denoted (M, J, ω) with
g(·, ·) = ω(·, J·).
If J is merely an almost complex structure then (M, J, ω), dω = 0,
is an almost Kähler manifold.
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Examples
Examples are abundant.
I Any algebraic manifold M ⊂ CPN . The Fubini Study metric

on CPN restricts to a Kähler metric.
I A complex torus M = Cn/Λ, Λ is a lattice of rank 2n, has the

flat Kähler metric.
I Not all examples are algebraic: A compact complex manifold

M is algebraic if and only if it admits a Kähler form ω with
[ω] ∈ H2(M,Z). Then ω ∈ c1(L) for an ample holomorphic
line bundle L.

Kodaira embedding
Let L be an ample line bundle on M, then

ιLr : M → P
(
H0(M,O(Lr ))∗

)
is an embedding for r >> 1.
I In the algebraic case M is “polarized” by L, (M, L). But in

general [ω] ∈ H2(M,R) is an irrational class.
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Curvature

∂∂-lemma
If ω1 ∈ [ω0] another Kähler form in the same cohomology class then

ω1 − ω0 =
√
−1∂∂f , for some f ∈ C∞(M).

Kähler metrics on (M, J) in a fixed Kähler class [ω] ∈ H2(M,R)
are parametrized by potential functions f ∈ C∞(M).

Ricci curvature
The Ricci curvature of the metric g has a simple expression on
Kähler manifolds:
I The Ricci form ρ(·, ·) := Ric(J·, ·) is the (1, 1) form associated

to Ric.
I ρ =

√
−1∂∂ log

(
detωαβ

)
, where in local coordinates

ω =
√
−1
∑
ωαβdz

α ∧ dzβ .
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Curvature
Definition
(M, J, g) is Kähler-Einstein if

Ric = λg

for a constant λ.

Since [ρ] ∈ 2πc1(M), we have λ[ω] = 2πc1(M).

Kahler-Einstein problem
Let KM = Λn,0TM be the canonical bundle.
I (λ < 0) KM is ample, [ω] = 2π

λ c1(M). (Solved S.-T. Yau, T.
Aubin, 1976)

I (λ = 0) c1(M) = 0. Existence follows from Yau’s solution to
the Calabi conjecture. (Solved by S.-T. Yau, 1977)

I (λ > 0) K−1
M is ample, so (M, J) is Fano. Existence of of K-E

metric proved to by equivalent to K-polystability of (M,K−1
M )

(X. Chen, S. Donaldson, S. Sun 2012, also G. Tian 2012)
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cscK
The scalar curvature S = gαβ Ricαβ can be expressed

Sωn = nρ ∧ ωn−1

A constant scalar curvature Kähler metric (cscK) satisfies

S = S

where

S =
1

Vol(M)

∫
1

(n − 1)!
ρ ∧ ωn−1

=
n[ρ] · [ω]n−1

[ω]n

Yau-Tian-Donaldson Conjecture
A polarized complex manifold (M, L) should admit a cscK metric in
the class c1(L) if and only if (M, L) is K-polystable.
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cscK

I One can extend the conjecture to consider Kähler manifolds
(M, α) polarized with a possibly irrational Kähler class
α ∈ H2(M,R). (Z. Sjöström Dyrefelt 2017)

I The Käher-Einstein case was proved by X. Chen, S.
Donaldson, S. Sun 2012, see also G. Tian 2012.

I The “only if” part has been proved. (J. Stoppa ’08; R. Berman
’13; R. Berman, T. Darvas, C. Lu ’16)

I For the rest of the conjecture it has been proved that existence
of cscK is equivalent to an analytic stability condition,
convexity of a Kempf-Ness functional, K-energy. ( X. Chen, J.
Cheng ’18)



Space of metrics
Fix a compact symplectic manifold (M, ω). ACω is the space of
almost complex structures J compatible with ω:

ω(JX , JY ) = ω(X ,Y )

ω(X , JX ) > 0, for X 6= 0

AC iω ⊂ ACω
is the subvariety of integrable complex structures, Nijenhuis tensor
vanishes, NJ

∼= 0

ACω infinite dimensional Kähler manifold
I The tangent space TJACω consists of A ∈ End(TM) with

JA = −AJ and ω(AX ,Y ) + ω(X ,AY ) = 0

I ACω has a complex structure J :

JA = J ◦ A
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Space of metrics
I Fix J0 ∈ ACω. Let End(TM, J0)S be all tensors µ ∈ End(TM)

1. J0 ◦ µ = −µ ◦ J0,
2. µ is symmetric with respect to gJ0 ,
3. 1− µ ◦ µ > 0

Then

End(TM, J0)S → ACω
µ 7→ J0

(
1− µ

)(
1 + µ

)−1

is a complex analytic chart.
I The Kähler metric is given by

G (A,B) =
1
2

∫
tr
(
AB
) ωn

n!

with the Kähler form

Ω(A,B) =
1
2

∫
tr
(
JAB

) ωn

n!
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Moment map

Let G ⊂ Symp(ω) be the group of Hamiltonian diffeomorphisms;
G acts on (ACω,J ,Ω) by holomorphic isometries.

Theorem ( A. Fukiki ’92, S. Donaldson ’94)
The action of G on ACω is hamiltonian with moment map

µ : ACω → C∞0 (M)

µ(J) = SJ − S

SJ is the scalar curvature of the Chern connection, the usual scalar
curvature when J integrable.
The Lie algebra of G is C∞0 (M), hamiltonian functions.
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Moment map
For H ∈ C∞(M) the hamiltonian vector field XH is defined by

dH = XH yω

The infinitesimal action of C∞0 (M)

P : C∞0 (M)→ TJACω

P(H) = LXH
J

The derivative of SJ is

Q : TJACω → C∞0 (M)

µ being a moment map means

〈Q(α),H〉L2 = Ω
(
α,P(H)

)
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Kähler classes
The hamiltonian group G has no complexification, but we can still
describe the orbits of GC on integrable J ∈ AC iω. Extend

P : C∞0 (M,C)→ TJACω

J0, J1 are in the same “orbit” of GC if there is a path
φt ∈ C∞0 (M,C) and Jt ∈ AC iω joining J0, J1

d

dt
Jt = Pt(φt)

There is an f ∈ Diff(M) with f ∗J1 = J0 and

f ∗J1 = J0 and f ∗ω = ω +
√
−1∂∂φ

The orbit of GC is essentially the Kähler class of ([ω], J0){
ω +
√
−1∂∂φ | φ ∈ C∞(M), ω +

√
−1∂∂φ > 0

}
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Deformation complex
We need a Kuranishi space for the deformations of J0 ∈ AC iω
modulo GC.

The infinitesimal action of GC is given by

P : C∞0 (M,C)→ TJ0AC iω

We also have
∂ : TJ0AC iω → Ω0,2(T 1,0)

Let E 2 be the kernel of

Λ0,2 ⊗ T 1,0 ∼= Λ0,2 ⊗ Λ0,1 → Λ3

Define B2 = Γ
(
E 2).

We have the elliptic complex

C∞0 (M,C)
P−→ TJ0AC iω

∂−→ B2 → · · ·
and

H̃1 =
{
α ∈ TJ0AC iω|P∗α = ∂α = 0

}
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Slice Theorem
Theorem
There is a ball B ⊂ H̃1 around the origin and a K -equivariant map

Φ : B → ACω

such that the G orbit of every integrable J near J0 intersects the
image of Φ. If x and x ′ are in the same KC orbit, Φ(x) integrable,
then Φ(x),Φ(x ′) are in same GC orbit. And moment map restricts
to µ : ACω → C∞0 (M)

µ : (B,Ω)→ k.

First, by modification of Kuranishi’s argument we get a
K -equivariant map

Φ1 : B1 → ACω
We must perturb Φ1 to cancel out the k⊥ portion of µ

k⊕ k⊥ = C∞0 (M).
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Slice Theorem

Let U ⊂ C∞0 (M) be a neighborhood of 0 so that if φ ∈ U

ωt = ω + tddcφ, is Kähler for t ∈ [0, 1]

Define t-varying vector field Xt by

Xt yωt = dcφ

Define ft ∈ Diff(M) by integrating Xt . We have f ∗1 ω1 = ω and
define

F (φ, J) = f ∗1 J

And
f ∗1
(
J, ω + ddcφ

)
=
(
F (φ, J), ω

)
Note that if φ ∈ L2

k then F (φ, J) ∈ L2
k−3.
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Slice Theorem

Let V ⊂ k⊥ be a small ball. Define map

G : B1 × V → k⊥

(x , φ) 7→ ΠS(F (φ,Φ1(x))

where Π : C∞0 → k⊥ is the projection.

Differential at origin

DG(0,0) : k⊥ → k⊥

DG(0,0)ψ = P∗P(ψ)

is the restriction of a 4-th order elliptic operator.
But if φ ∈ L2

k then G (x , φ) ∈ L2
k−5, so there is no hope of using the

Banach implicit function theorem.
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Nash-Moser theorem

We need the Nash-Moser Implicit Function Theorem.
(R. Hamilton, Bull. A.M.S. Vol. 7, No. 1, 1982 )

We note that G is a smooth map of Fréchet spaces. Further, it is a
smooth tame map. The Nash-Moser theorem is applicable if

DG(x ,φ) : k⊥ → k⊥

has a smooth tame inverse for (x , φ) in a neighborhood of (0, 0).
This follows from the fact that DG(0,0) is elliptic, Fredholm theory,
and results in (Hamilton ‘82 ).
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Finite dimensional GIT

Proposition
After possibly shrinking B , suppose v ∈ B is polystable for the KC

action on H̃1. Then there is v0 ∈ B in the KC-orbit of v with
µ(v0) = 0.

Let
ν : H̃1 → k

be the moment map for the flat Kähler structure (Ω0, J) on H̃1.
The Taylor series gives

µ(tv) = µ(0) + tdµ0(v) +
t2

2
d2

dt2

∣∣∣
t=0

µ(tv) + O(t3)

We have µ = 0 and dµ0 = 0.
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Finite dimensional GIT

It is straight forward that

d2

dt2
µ(tx)

∣∣∣
t=0

= 2ν(x).

So
µ(tx) = ν(tx) + O(t3)

One shows that if x is polystable iff ‖ν(x)‖ has a minimum on
KC-orbit. Then after possibly shrinking B , ‖µ(x)‖ has a minimum
x ′ which must have µ(x ′) = 0.
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K-polystability
K-polystability is defined in terms of 1-parameter degenerations,
test configurations. A test configuration for (M, L) is a flat
C∗-equivariant family

π : χ→ C

with L a relatively ample bundle on χ and (χt ,Lt) ∼= (M, Lr ) for
t 6= 0.

The Donaldson-Futaki invariant DF(χ,L) is a weight defined by
Hilbert polynomials on the central fiber (χ0,L) with its C∗-action.

Definition
(M, L) is K-polystable if DF(χ,L) ≥ 0 for all test configurations.
And if DF(χ,L) = 0 for a test configuration with normal total
space, χ ∼= M × C.

Theorem
Let (M, J0, ω) be cscK. Let J ∈ AC iω be a nearby Kähler structure.
If (M, J) is K-polystable then it admits a cscK metric
(M, J, ω + ddcφ).
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K-polystability

If (M, J) is K-polystable then its GC orbit must intersect the slice
in a polystable orbit.
Otherwise, using the finite dimensional GIT picture, one constructs
a (smooth) degeneration

π : χ→ C

where the central fiber χ0 admits a cscK metric. Thus
DF(χ,L) = 0, but χ is not a product.
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