The slice theorem in Kähler geometry

Craig van Coevering

Boğaziçi University

July 2, 2021

 (M, ω) compact symplectic manifold. Almost complex structure J is compatible with ω if $\omega(\cdot, J \cdot)$ is a Riemannian metric. The space of compatible almost complex structures \mathcal{AC}_{ω} is an infinite dimensional Kähler manifold.

 (M, ω) compact symplectic manifold. Almost complex structure J is compatible with ω if $\omega(\cdot, J \cdot)$ is a Riemannian metric. The space of compatible almost complex structures \mathcal{AC}_{ω} is an infinite dimensional Kähler manifold.

 (M, ω, J) is almost Kähler manifold, $J \in \mathcal{AC}_{\omega}$, and is a Kähler manifold if J is integrable, $\mathcal{AC}_{\omega}^{i}$.

 $\mathcal{AC}^i_\omega \subset \mathcal{AC}_\omega$

The Hamiltonian group \mathcal{G} of (M, ω) acts by holomorphic isometries.

 (M, ω) compact symplectic manifold. Almost complex structure J is compatible with ω if $\omega(\cdot, J \cdot)$ is a Riemannian metric. The space of compatible almost complex structures \mathcal{AC}_{ω} is an infinite dimensional Kähler manifold.

 (M, ω, J) is almost Kähler manifold, $J \in AC_{\omega}$, and is a Kähler manifold if J is integrable, AC_{ω}^{i} .

$$\mathcal{AC}^i_\omega \subset \mathcal{AC}_\omega$$

The Hamiltonian group \mathcal{G} of (M, ω) acts by holomorphic isometries.

Moment map

The scalar curvature is the moment map for G acting on AC_{ω} . (A. Fujiki '92, S. Donaldson '94)

$$\mu:\mathcal{AC}_{\omega}
ightarrow C_{0}^{\infty}(M)$$
 $\mu(J)=S-\overline{S}$

(M, ω, J_0) cscK with isometry group K.

Finite dimensional slice

There is a ball $B\subset \tilde{H}^1$ in the Kuranishi space and a section, through J_0

$$\Phi: B \to \mathcal{AC}^i_\omega$$

So that μ restricts to

$$u:(B,\Omega) \to \mathfrak{k}^*$$

moment map for action of K on (B, Ω) . (G Székelyhidi, T. Brönnle 2010)

(M, ω, J_0) cscK with isometry group K.

Finite dimensional slice

There is a ball $B\subset \tilde{H}^1$ in the Kuranishi space and a section, through J_0

$$\Phi: B
ightarrow \mathcal{AC}^i_\omega$$

So that μ restricts to

$$\nu: (B, \Omega) \to \mathfrak{k}^*$$

moment map for action of K on (B, Ω) . (G Székelyhidi, T. Brönnle 2010)

Theorem

Let $J = \Phi(x)$ for $x \in B$. Then (M, J) admits a cscK metric in the Kähler class $[\omega] \in H^2(M, \mathbb{R})$ if and only if the orbit $K^{\mathbb{C}} \cdot x \subset B$ is polystable.

This is due to G Székelyhidi, T. Brönnle 2010, but with gaps in argument.

Applications

Some applications of the results.

- Study of deformations of constant scalar curvature Kähler metrics, Sasakian metrics, and Higgs bundles (C. Tippler, C. van Coevering, S. Simanca, Y. Fan)
- Proof that small complex deformations of cscK metrics have K-energy bounded below. (V. Tosatti)
- Slice theorem has been used to construct (course) moduli of cscK metrics, as a complex analytic space (R. Dervan, P. Naumann)
- Moduli space of constant scalar curvature Sasakian metrics (C. van Coevering)

Kähler geometry

A Kähler manifold is a complex manifold (M, J) with an Hermitian metric g compatible with the complex structure:

g is Kähler if

- Almost Hermitian: $g(J, J) = g(\cdot, \cdot)$.
- ▶ J parallel: $\nabla J = 0$, where ∇ Levi-Civita connection.

Kähler geometry

A Kähler manifold is a complex manifold (M, J) with an Hermitian metric g compatible with the complex structure:

g is Kähler if

- Almost Hermitian: $g(J, J) = g(\cdot, \cdot)$.
- ▶ J parallel: $\nabla J = 0$, where ∇ Levi-Civita connection.

An Hermitian metric g on a complex manifold (M, J) is Kähler if and only if $\omega(\cdot, \cdot) := g(J \cdot, \cdot)$ is closed, $d\omega = 0$. The Kähler form ω is a type (1, 1) symplectic form. The Kähler manifold can be denoted (M, J, ω) with $g(\cdot, \cdot) = \omega(\cdot, J \cdot)$. If J is merely an almost complex structure then (M, J, ω) , $d\omega = 0$, is an *almost Kähler manifold*.

Examples

Examples are abundant.

- Any algebraic manifold M ⊂ CP^N. The Fubini Study metric on CP^N restricts to a Kähler metric.
- A complex torus M = Cⁿ/Λ, Λ is a lattice of rank 2n, has the flat Kähler metric.
- Not all examples are algebraic: A compact complex manifold *M* is algebraic if and only if it admits a Kähler form ω with [ω] ∈ H²(M, ℤ). Then ω ∈ c₁(L) for an ample holomorphic line bundle L.

Examples

Examples are abundant.

- Any algebraic manifold M ⊂ CP^N. The Fubini Study metric on CP^N restricts to a Kähler metric.
- A complex torus M = Cⁿ/Λ, Λ is a lattice of rank 2n, has the flat Kähler metric.
- Not all examples are algebraic: A compact complex manifold *M* is algebraic if and only if it admits a Kähler form ω with [ω] ∈ H²(M, ℤ). Then ω ∈ c₁(L) for an ample holomorphic line bundle L.

Kodaira embedding

Let L be an ample line bundle on M, then

$$\iota_{L^r}: M \to \mathbb{P}\Big(H^0(M, \mathcal{O}(L^r))^*\Big)$$

is an embedding for r >> 1.

In the algebraic case M is "polarized" by L, (M, L). But in general [ω] ∈ H²(M, ℝ) is an irrational class.

$\partial \overline{\partial}$ -lemma

If $\omega_1 \in [\omega_0]$ another Kähler form in the same cohomology class then

$$\omega_1 - \omega_0 = \sqrt{-1}\partial\overline{\partial}f$$
, for some $f \in C^{\infty}(M)$.

Kähler metrics on (M, J) in a fixed Kähler class $[\omega] \in H^2(M, \mathbb{R})$ are parametrized by potential functions $f \in C^{\infty}(M)$.

$\partial \overline{\partial}$ -lemma

If $\omega_1 \in [\omega_0]$ another Kähler form in the same cohomology class then

$$\omega_1 - \omega_0 = \sqrt{-1} \partial \overline{\partial} f$$
, for some $f \in C^\infty(M)$.

Kähler metrics on (M, J) in a fixed Kähler class $[\omega] \in H^2(M, \mathbb{R})$ are parametrized by potential functions $f \in C^{\infty}(M)$.

Ricci curvature

The Ricci curvature of the metric g has a simple expression on Kähler manifolds:

► The Ricci form \(\rho(\cdot, \cdot)\) := Ric(J\(\cdot, \cdot)\) is the (1, 1) form associated to Ric.

$$\begin{split} \bullet \ \rho = \sqrt{-1\partial}\partial \log \bigl(\det \omega_{\alpha\overline{\beta}}\bigr), \text{ where in local coordinates } \\ \omega = \sqrt{-1}\sum \omega_{\alpha\overline{\beta}}dz^{\alpha} \wedge dz^{\overline{\beta}}. \end{split}$$

Definition (M, J, g) is Kähler-Einstein if

$$\operatorname{Ric} = \lambda g$$

for a constant λ .

Definition (M, J, g) is Kähler-Einstein if

$$\mathsf{Ric} = \lambda g$$

for a constant λ .

Since $[\rho] \in 2\pi c_1(M)$, we have $\lambda[\omega] = 2\pi c_1(M)$.

Definition (M, J, g) is Kähler-Einstein if

$$\mathsf{Ric} = \lambda g$$

for a constant λ .

Since $[\rho] \in 2\pi c_1(M)$, we have $\lambda[\omega] = 2\pi c_1(M)$.

Kahler-Einstein problem

Let $K_M = \Lambda^{n,0} TM$ be the canonical bundle.

- $(\lambda < 0) \ K_M$ is ample, $[\omega] = \frac{2\pi}{\lambda} c_1(M)$. (Solved S.-T. Yau, T. Aubin, 1976)
- (λ = 0) c₁(M) = 0. Existence follows from Yau's solution to the Calabi conjecture. (Solved by S.-T. Yau, 1977)
- (λ > 0) K_M⁻¹ is ample, so (M, J) is Fano. Existence of of K-E metric proved to by equivalent to K-polystability of (M, K_M⁻¹) (X. Chen, S. Donaldson, S. Sun 2012, also G. Tian 2012)

 $\operatorname{csc} K$

The scalar curvature ${\cal S}=g^{lpha\overline{eta}}\,{
m Ric}_{lpha\overline{eta}}$ can be expressed

$$S\omega^n = n\rho \wedge \omega^{n-1}$$

cscK

The scalar curvature $S=g^{\alpha\overline{eta}}\operatorname{Ric}_{\alpha\overline{eta}}$ can be expressed $S\omega^n=n
ho\wedge\omega^{n-1}$

A constant scalar curvature Kähler metric (cscK) satisfies $S = \overline{S}$

where

$$\overline{S} = \frac{1}{\operatorname{Vol}(M)} \int \frac{1}{(n-1)!} \rho \wedge \omega^{n-1}$$
$$= \frac{n[\rho] \cdot [\omega]^{n-1}}{[\omega]^n}$$

cscK

The scalar curvature $S = g^{\alpha\overline{\beta}} \operatorname{Ric}_{\alpha\overline{\beta}}$ can be expressed $S\omega^n = n\rho \wedge \omega^{n-1}$

A constant scalar curvature Kähler metric (cscK) satisfies $S = \overline{S}$

where

$$\overline{S} = \frac{1}{\operatorname{Vol}(M)} \int \frac{1}{(n-1)!} \rho \wedge \omega^{n-1}$$
$$= \frac{n[\rho] \cdot [\omega]^{n-1}}{[\omega]^n}$$

Yau-Tian-Donaldson Conjecture

A polarized complex manifold (M, L) should admit a cscK metric in the class $c_1(L)$ if and only if (M, L) is K-polystable.

cscK

- One can extend the conjecture to consider Kähler manifolds (M, α) polarized with a possibly irrational Kähler class α ∈ H²(M, ℝ). (Z. Sjöström Dyrefelt 2017)
- The Käher-Einstein case was proved by X. Chen, S. Donaldson, S. Sun 2012, see also G. Tian 2012.
- The "only if" part has been proved. (J. Stoppa '08; R. Berman '13; R. Berman, T. Darvas, C. Lu '16)
- For the rest of the conjecture it has been proved that existence of cscK is equivalent to an analytic stability condition, convexity of a Kempf-Ness functional, K-energy. (X. Chen, J. Cheng '18)

Fix a compact symplectic manifold (M, ω) . \mathcal{AC}_{ω} is the space of almost complex structures J compatible with ω :

$$\omega(JX, JY) = \omega(X, Y)$$

 $\omega(X, JX) > 0$, for $X \neq 0$

Fix a compact symplectic manifold (M, ω) . \mathcal{AC}_{ω} is the space of almost complex structures J compatible with ω :

$$\omega(JX, JY) = \omega(X, Y)$$

 $\omega(X, JX) > 0$, for $X \neq 0$

$$\mathcal{AC}^i_\omega \subset \mathcal{AC}_\omega$$

is the subvariety of integrable complex structures, Nijenhuis tensor vanishes, $N_J \cong 0$

Fix a compact symplectic manifold (M, ω) . \mathcal{AC}_{ω} is the space of almost complex structures J compatible with ω :

 $\omega(JX, JY) = \omega(X, Y)$ $\omega(X, JX) > 0$, for $X \neq 0$

$$\mathcal{AC}^i_\omega \subset \mathcal{AC}_\omega$$

is the subvariety of integrable complex structures, Nijenhuis tensor vanishes, $N_J \cong 0$

 \mathcal{AC}_ω infinite dimensional Kähler manifold

▶ The tangent space $T_J A C_{\omega}$ consists of $A \in End(TM)$ with

$$JA = -AJ$$
 and $\omega(AX, Y) + \omega(X, AY) = 0$

• \mathcal{AC}_{ω} has a complex structure \mathcal{J} :

$$\mathcal{J}A = J \circ A$$

▶ Fix $J_0 \in AC_{\omega}$. Let End $(TM, J_0)_S$ be all tensors $\mu \in End(TM)$

1.
$$J_0 \circ \mu = -\mu \circ J_0$$
,

2. μ is symmetric with respect to g_{J_0} ,

3.
$$1 - \mu \circ \mu > 0$$

Fix J₀ ∈ AC_ω. Let End(TM, J₀)_S be all tensors µ ∈ End(TM)
1. J₀ ∘ µ = −µ ∘ J₀,
2. µ is symmetric with respect to g_{J₀},
3. 1 − µ ∘ µ > 0
Then

$$\operatorname{End}(TM, J_0)_S \to \mathcal{AC}_{\omega}$$
$$\mu \mapsto J_0(1-\mu)(1+\mu)^{-1}$$

is a complex analytic chart.

Fix J₀ ∈ AC_ω. Let End(TM, J₀)_S be all tensors µ ∈ End(TM)
1. J₀ ∘ µ = −µ ∘ J₀,
2. µ is symmetric with respect to g_{J₀},
3. 1 − µ ∘ µ > 0
Then

$$\operatorname{End}(TM, J_0)_S \to \mathcal{AC}_{\omega}$$
$$\mu \mapsto J_0(1-\mu)(1+\mu)^{-1}$$

is a complex analytic chart.

The Kähler metric is given by

$$G(A,B) = \frac{1}{2} \int \operatorname{tr}(AB) \frac{\omega^n}{n!}$$

with the Kähler form

$$\Omega(A,B) = \frac{1}{2} \int \operatorname{tr}(JAB) \frac{\omega^n}{n!}$$

Let $\mathcal{G} \subset \text{Symp}(\omega)$ be the group of Hamiltonian diffeomorphisms; \mathcal{G} acts on $(\mathcal{AC}_{\omega}, \mathcal{J}, \Omega)$ by holomorphic isometries.

Let $\mathcal{G} \subset \text{Symp}(\omega)$ be the group of Hamiltonian diffeomorphisms; \mathcal{G} acts on $(\mathcal{AC}_{\omega}, \mathcal{J}, \Omega)$ by holomorphic isometries.

Theorem (A. Fukiki '92, S. Donaldson '94) The action of \mathcal{G} on \mathcal{AC}_{ω} is hamiltonian with moment map

$$\mu:\mathcal{AC}_{\omega}
ightarrow C_{0}^{\infty}(M)\ \mu(J)=S_{J}-\overline{S}$$

Let $\mathcal{G} \subset \text{Symp}(\omega)$ be the group of Hamiltonian diffeomorphisms; \mathcal{G} acts on $(\mathcal{AC}_{\omega}, \mathcal{J}, \Omega)$ by holomorphic isometries.

Theorem (A. Fukiki '92, S. Donaldson '94) The action of \mathcal{G} on \mathcal{AC}_{ω} is hamiltonian with moment map

$$\mu: \mathcal{AC}_{\omega} o C_0^{\infty}(M) \ \mu(J) = S_J - \overline{S}$$

 S_J is the scalar curvature of the Chern connection, the usual scalar curvature when J integrable. The Lie algebra of \mathcal{G} is $C_0^{\infty}(M)$, hamiltonian functions.

For $H \in C^{\infty}(M)$ the hamiltonian vector field X_H is defined by

$$dH = X_H \,\lrcorner\, \omega$$

The infinitesimal action of $C_0^{\infty}(M)$

 $P: C_0^{\infty}(M) o T_J \mathcal{AC}_{\omega}$ $P(H) = \mathcal{L}_{X_H} J$

For $H \in C^{\infty}(M)$ the hamiltonian vector field X_H is defined by

$$dH = X_H \,\lrcorner\, \omega$$

The infinitesimal action of $C_0^{\infty}(M)$

$$P: C_0^{\infty}(M) o T_J \mathcal{AC}_{\omega}$$

 $P(H) = \mathcal{L}_{X_H} J$

The derivative of S_J is

$$Q: \, T_J \mathcal{AC}_\omega \to C_0^\infty(M)$$

For $H \in C^{\infty}(M)$ the hamiltonian vector field X_H is defined by

$$dH = X_H \,\lrcorner\, \omega$$

The infinitesimal action of $C_0^{\infty}(M)$

$$P: C_0^\infty(M) o T_J \mathcal{AC}_\omega$$

 $P(H) = \mathcal{L}_{X_H} J$

The derivative of S_J is

$$Q: T_J \mathcal{AC}_\omega \to C_0^\infty(M)$$

 μ being a moment map means

$$\langle Q(\alpha), H \rangle_{L^2} = \Omega(\alpha, P(H))$$

The hamiltonian group \mathcal{G} has no complexification, but we can still describe the orbits of $\mathcal{G}^{\mathbb{C}}$ on integrable $J \in \mathcal{AC}^{i}_{\omega}$. Extend

 $P: C_0^{\infty}(M, \mathbb{C}) \to T_J \mathcal{AC}_{\omega}$

The hamiltonian group \mathcal{G} has no complexification, but we can still describe the orbits of $\mathcal{G}^{\mathbb{C}}$ on integrable $J \in \mathcal{AC}^{i}_{\omega}$. Extend

$$P: C_0^\infty(M,\mathbb{C}) \to T_J \mathcal{AC}_\omega$$

 J_0, J_1 are in the same "orbit" of $\mathcal{G}^{\mathbb{C}}$ if there is a path $\phi_t \in C_0^{\infty}(M, \mathbb{C})$ and $J_t \in \mathcal{AC}_{\omega}^i$ joining J_0, J_1

$$\frac{d}{dt}J_t = P_t(\phi_t)$$

The hamiltonian group \mathcal{G} has no complexification, but we can still describe the orbits of $\mathcal{G}^{\mathbb{C}}$ on integrable $J \in \mathcal{AC}^{i}_{\omega}$. Extend

$$P: C_0^\infty(M,\mathbb{C}) \to T_J \mathcal{AC}_\omega$$

 J_0, J_1 are in the same "orbit" of $\mathcal{G}^{\mathbb{C}}$ if there is a path $\phi_t \in C_0^{\infty}(M, \mathbb{C})$ and $J_t \in \mathcal{AC}^i_{\omega}$ joining J_0, J_1

$$\frac{d}{dt}J_t = P_t(\phi_t)$$

There is an $f \in \text{Diff}(M)$ with $f^*J_1 = J_0$ and

$$f^*J_1 = J_0$$
 and $f^*\omega = \omega + \sqrt{-1}\partial\overline{\partial}\phi$

The hamiltonian group \mathcal{G} has no complexification, but we can still describe the orbits of $\mathcal{G}^{\mathbb{C}}$ on integrable $J \in \mathcal{AC}^{i}_{\omega}$. Extend

$$P: C_0^\infty(M,\mathbb{C}) \to T_J \mathcal{AC}_\omega$$

 J_0, J_1 are in the same "orbit" of $\mathcal{G}^{\mathbb{C}}$ if there is a path $\phi_t \in C_0^{\infty}(M, \mathbb{C})$ and $J_t \in \mathcal{AC}^i_{\omega}$ joining J_0, J_1

$$\frac{d}{dt}J_t = P_t(\phi_t)$$

There is an $f \in \text{Diff}(M)$ with $f^*J_1 = J_0$ and $f^*J_1 = J_0$ and $f^*\omega = \omega + \sqrt{-1}\partial\overline{\partial}\phi$

The orbit of $\mathcal{G}^{\mathbb{C}}$ is essentially the Kähler class of $([\omega], J_0)$

$$\left\{\omega+\sqrt{-1}\partial\overline{\partial}\phi\mid\phi\in C^{\infty}(M),\;\omega+\sqrt{-1}\partial\overline{\partial}\phi>0\right\}$$

We need a Kuranishi space for the deformations of $J_0 \in \mathcal{AC}^i_\omega$ modulo $\mathcal{G}^{\mathbb{C}}$.

We need a Kuranishi space for the deformations of $J_0 \in \mathcal{AC}^i_\omega$ modulo $\mathcal{G}^{\mathbb{C}}$.

The infinitesimal action of $\mathcal{G}^{\mathbb{C}}$ is given by

$$P: C_0^\infty(M,\mathbb{C}) \to T_{J_0}\mathcal{AC}^i_\omega$$

We need a Kuranishi space for the deformations of $J_0 \in \mathcal{AC}^i_\omega$ modulo $\mathcal{G}^{\mathbb{C}}$.

The infinitesimal action of $\mathcal{G}^{\mathbb{C}}$ is given by

$$P: C_0^\infty(M,\mathbb{C}) \to T_{J_0}\mathcal{AC}^i_\omega$$

We also have

$$\overline{\partial}$$
: $T_{J_0}\mathcal{AC}^i_\omega \to \Omega^{0,2}(T^{1,0})$

We need a Kuranishi space for the deformations of $J_0 \in \mathcal{AC}^i_\omega$ modulo $\mathcal{G}^\mathbb{C}$.

The infinitesimal action of $\mathcal{G}^{\mathbb{C}}$ is given by

$$P: C_0^{\infty}(M,\mathbb{C}) \to T_{J_0}\mathcal{AC}^i_{\omega}$$

We also have

$$\overline{\partial}: \mathcal{T}_{J_0}\mathcal{AC}^i_{\omega} \to \Omega^{0,2}\big(\mathcal{T}^{1,0}\big)$$

Let E^2 be the kernel of $\Lambda^{0,2}\otimes T^{1,0}\cong \Lambda^{0,2}\otimes \Lambda^{0,1}\to \Lambda^3$ Define $\mathcal{B}^2=\Gamma(E^2)$.

We need a Kuranishi space for the deformations of $J_0 \in \mathcal{AC}^i_\omega$ modulo $\mathcal{G}^{\mathbb{C}}$.

The infinitesimal action of $\mathcal{G}^{\mathbb{C}}$ is given by

$$P: C_0^\infty(M,\mathbb{C}) \to T_{J_0}\mathcal{AC}^i_\omega$$

We also have

$$\overline{\partial}: \, \mathcal{T}_{J_0} \mathcal{AC}^i_{\omega} \to \Omega^{0,2} \big(\, \mathcal{T}^{1,0} \big)$$

Let E^2 be the kernel of

$$\Lambda^{0,2} \otimes \mathcal{T}^{1,0} \cong \Lambda^{0,2} \otimes \Lambda^{0,1} \to \Lambda^3$$

Define $\mathcal{B}^2 = \Gamma(E^2)$. We have the elliptic complex

$$C_0^{\infty}(M,\mathbb{C}) \xrightarrow{P} T_{J_0}\mathcal{AC}_{\omega}^i \xrightarrow{\overline{\partial}} B^2 \to \cdots$$

and

$$\tilde{H}^{1} = \left\{ \alpha \in T_{J_{0}} \mathcal{A} \mathcal{C}_{\omega}^{i} | \mathcal{P}^{*} \alpha = \overline{\partial} \alpha = \mathbf{0} \right\}$$

Theorem

There is a ball $B \subset \tilde{H}^1$ around the origin and a K-equivariant map

 $\Phi: B \to \mathcal{AC}_\omega$

such that the \mathcal{G} orbit of every integrable J near J_0 intersects the image of Φ . If x and x' are in the same $K^{\mathbb{C}}$ orbit, $\Phi(x)$ integrable, then $\Phi(x), \Phi(x')$ are in same $\mathcal{G}^{\mathbb{C}}$ orbit. And moment map restricts to $\mu : \mathcal{AC}_{\omega} \to C_0^{\infty}(M)$

 $\mu: (B, \Omega) \rightarrow \mathfrak{k}.$

Theorem

There is a ball $B \subset \tilde{H}^1$ around the origin and a K-equivariant map

$$\Phi: B o \mathcal{AC}_{\omega}$$

such that the \mathcal{G} orbit of every integrable J near J_0 intersects the image of Φ . If x and x' are in the same $K^{\mathbb{C}}$ orbit, $\Phi(x)$ integrable, then $\Phi(x), \Phi(x')$ are in same $\mathcal{G}^{\mathbb{C}}$ orbit. And moment map restricts to $\mu : \mathcal{AC}_{\omega} \to C_0^{\infty}(M)$

$$\mu: (B, \Omega) \rightarrow \mathfrak{k}.$$

First, by modification of Kuranishi's argument we get a K-equivariant map

$$\Phi_1: B_1 \to \mathcal{AC}_\omega$$

Theorem

There is a ball $B \subset \tilde{H}^1$ around the origin and a K-equivariant map

$$\Phi: B \to \mathcal{AC}_{\omega}$$

such that the \mathcal{G} orbit of every integrable J near J_0 intersects the image of Φ . If x and x' are in the same $K^{\mathbb{C}}$ orbit, $\Phi(x)$ integrable, then $\Phi(x), \Phi(x')$ are in same $\mathcal{G}^{\mathbb{C}}$ orbit. And moment map restricts to $\mu : \mathcal{AC}_{\omega} \to C_0^{\infty}(M)$

$$\mu: (B, \Omega) \rightarrow \mathfrak{k}.$$

First, by modification of Kuranishi's argument we get a K-equivariant map

$$\Phi_1: B_1 \to \mathcal{AC}_\omega$$

We must perturb Φ_1 to cancel out the \mathfrak{k}^{\perp} portion of μ

$$\mathfrak{k}\oplus\mathfrak{k}^{\perp}=C_0^{\infty}(M).$$

Let $U \subset C_0^\infty(M)$ be a neighborhood of 0 so that if $\phi \in U$

 $\omega_t = \omega + t dd^c \phi$, is Kähler for $t \in [0, 1]$

Let $U \subset C_0^\infty(M)$ be a neighborhood of 0 so that if $\phi \in U$

 $\omega_t = \omega + t dd^c \phi$, is Kähler for $t \in [0, 1]$

Define *t*-varying vector field X_t by

$$X_t \,\lrcorner\, \omega_t = d^c \phi$$

Let $U \subset C_0^\infty(M)$ be a neighborhood of 0 so that if $\phi \in U$

 $\omega_t = \omega + t dd^c \phi$, is Kähler for $t \in [0, 1]$

Define *t*-varying vector field X_t by

$$X_t \,\lrcorner\, \omega_t = d^c \phi$$

Define $f_t \in \text{Diff}(M)$ by integrating X_t . We have $f_1^*\omega_1 = \omega$ and define

$$F(\phi,J)=f_1^*J$$

Let $U \subset C_0^\infty(M)$ be a neighborhood of 0 so that if $\phi \in U$

 $\omega_t = \omega + t dd^c \phi$, is Kähler for $t \in [0, 1]$

Define *t*-varying vector field X_t by

$$X_t \,\lrcorner\, \omega_t = d^c \phi$$

Define $f_t \in \text{Diff}(M)$ by integrating X_t . We have $f_1^*\omega_1 = \omega$ and define

$$F(\phi,J)=f_1^*J$$

And

$$f_1^*(J, \omega + dd^c\phi) = (F(\phi, J), \omega)$$

Note that if $\phi \in L^2_k$ then $F(\phi, J) \in L^2_{k-3}$.

Let $V\subset \mathfrak{k}^\perp$ be a small ball. Define map

$$\begin{array}{cccc} G: & B_1 imes V &
ightarrow \ \mathfrak{k}^{\perp} \ & (x,\phi) & \mapsto & \Pi S(F(\phi,\Phi_1(x))) \end{array}$$

where $\Pi: C_0^{\infty} \to \mathfrak{k}^{\perp}$ is the projection.

Let $V \subset \mathfrak{k}^{\perp}$ be a small ball. Define map

$$egin{array}{rcl} G:&B_1 imes V& o&\mathfrak{k}^\perp\ &(x,\phi)&\mapsto&\Pi S(F(\phi,\Phi_1(x))) \end{array}$$

where $\Pi : C_0^\infty \to \mathfrak{k}^\perp$ is the projection. Differential at origin

 $DG_{(0,0)}: \mathfrak{k}^{\perp} \to \mathfrak{k}^{\perp}$ $DG_{(0,0)}\psi = P^*P(\psi)$

is the restriction of a 4-th order elliptic operator.

Let $V \subset \mathfrak{k}^{\perp}$ be a small ball. Define map

$$egin{array}{rcl} G:&B_1 imes V& o&\mathfrak{k}^\perp\ &(x,\phi)&\mapsto&\Pi S(F(\phi,\Phi_1(x)) \end{array}$$

where $\Pi: \, C_0^\infty \to \mathfrak{k}^\perp$ is the projection. Differential at origin

 $DG_{(0,0)} : \mathfrak{k}^{\perp} \to \mathfrak{k}^{\perp}$ $DG_{(0,0)}\psi = P^*P(\psi)$

is the restriction of a 4-th order elliptic operator. But if $\phi \in L^2_k$ then $G(x, \phi) \in L^2_{k-5}$, so there is no hope of using the Banach implicit function theorem.

Nash-Moser theorem

We need the Nash-Moser Implicit Function Theorem. (R. Hamilton, Bull. A.M.S. Vol. 7, No. 1, 1982) We need the Nash-Moser Implicit Function Theorem. (R. Hamilton, Bull. A.M.S. Vol. 7, No. 1, 1982)

We note that G is a smooth map of Fréchet spaces. Further, it is a smooth *tame* map. The Nash-Moser theorem is applicable if

$$DG_{(x,\phi)}:\mathfrak{k}^{\perp}\to\mathfrak{k}^{\perp}$$

has a smooth tame inverse for (x, ϕ) in a neighborhood of (0, 0). This follows from the fact that $DG_{(0,0)}$ is elliptic, Fredholm theory, and results in (Hamilton '82).

Proposition

After possibly shrinking B, suppose $v \in B$ is polystable for the $K^{\mathbb{C}}$ action on \tilde{H}^1 . Then there is $v_0 \in B$ in the $K^{\mathbb{C}}$ -orbit of v with $\mu(v_0) = 0$.

Proposition

After possibly shrinking B, suppose $v \in B$ is polystable for the $K^{\mathbb{C}}$ action on \tilde{H}^1 . Then there is $v_0 \in B$ in the $K^{\mathbb{C}}$ -orbit of v with $\mu(v_0) = 0$. Let

$$\nu: \tilde{H}^1 \to \mathfrak{k}$$

be the moment map for the flat Kähler structure (Ω_0, J) on \tilde{H}^1 .

Proposition

After possibly shrinking B, suppose $v \in B$ is polystable for the $K^{\mathbb{C}}$ action on \tilde{H}^1 . Then there is $v_0 \in B$ in the $K^{\mathbb{C}}$ -orbit of v with $\mu(v_0) = 0$. Let

$$\nu: \tilde{H}^1 \to \mathfrak{k}$$

be the moment map for the flat Kähler structure (Ω_0, J) on \tilde{H}^1 . The Taylor series gives

$$\mu(tv) = \mu(0) + td\mu_0(v) + \frac{t^2}{2} \frac{d^2}{dt^2} \Big|_{t=0} \mu(tv) + O(t^3)$$

We have $\mu = 0$ and $d\mu_0 = 0$.

It is straight forward that

$$\left.\frac{d^2}{dt^2}\mu(tx)\right|_{t=0}=2\nu(x).$$

So

$$\mu(tx) = \nu(tx) + O(t^3)$$

It is straight forward that

$$\frac{d^2}{dt^2}\mu(tx)\Big|_{t=0}=2\nu(x).$$

So

$$\mu(tx) = \nu(tx) + O(t^3)$$

One shows that if x is polystable iff $\|\nu(x)\|$ has a minimum on $\mathcal{K}^{\mathbb{C}}$ -orbit. Then after possibly shrinking B, $\|\mu(x)\|$ has a minimum x' which must have $\mu(x') = 0$.

K-polystability is defined in terms of 1-parameter degenerations, test configurations. A *test configuration* for (M, L) is a flat \mathbb{C}^* -equivariant family

 $\pi:\chi\to\mathbb{C}$

with \mathcal{L} a relatively ample bundle on χ and $(\chi_t, \mathcal{L}_t) \cong (M, L^r)$ for $t \neq 0$.

K-polystability is defined in terms of 1-parameter degenerations, test configurations. A *test configuration* for (M, L) is a flat \mathbb{C}^* -equivariant family

 $\pi:\chi\to\mathbb{C}$

with \mathcal{L} a relatively ample bundle on χ and $(\chi_t, \mathcal{L}_t) \cong (M, L^r)$ for $t \neq 0$.

The Donaldson-Futaki invariant $DF(\chi, \mathcal{L})$ is a weight defined by Hilbert polynomials on the central fiber (χ_0, \mathcal{L}) with its \mathbb{C}^* -action.

K-polystability is defined in terms of 1-parameter degenerations, test configurations. A *test configuration* for (M, L) is a flat \mathbb{C}^* -equivariant family

 $\pi:\chi\to\mathbb{C}$

with \mathcal{L} a relatively ample bundle on χ and $(\chi_t, \mathcal{L}_t) \cong (M, L^r)$ for $t \neq 0$.

The Donaldson-Futaki invariant $DF(\chi, \mathcal{L})$ is a weight defined by Hilbert polynomials on the central fiber (χ_0, \mathcal{L}) with its \mathbb{C}^* -action.

Definition

(M, L) is K-polystable if $DF(\chi, \mathcal{L}) \ge 0$ for all test configurations. And if $DF(\chi, \mathcal{L}) = 0$ for a test configuration with normal total space, $\chi \cong M \times \mathbb{C}$.

K-polystability is defined in terms of 1-parameter degenerations, test configurations. A *test configuration* for (M, L) is a flat \mathbb{C}^* -equivariant family

 $\pi:\chi\to\mathbb{C}$

with \mathcal{L} a relatively ample bundle on χ and $(\chi_t, \mathcal{L}_t) \cong (M, L^r)$ for $t \neq 0$.

The Donaldson-Futaki invariant $DF(\chi, \mathcal{L})$ is a weight defined by Hilbert polynomials on the central fiber (χ_0, \mathcal{L}) with its \mathbb{C}^* -action.

Definition

(M, L) is K-polystable if $DF(\chi, \mathcal{L}) \ge 0$ for all test configurations. And if $DF(\chi, \mathcal{L}) = 0$ for a test configuration with normal total space, $\chi \cong M \times \mathbb{C}$.

Theorem

Let (M, J_0, ω) be cscK. Let $J \in \mathcal{AC}^i_{\omega}$ be a nearby Kähler structure. If (M, J) is K-polystable then it admits a cscK metric $(M, J, \omega + dd^c \phi)$.

If (M, J) is K-polystable then its $\mathcal{G}^{\mathbb{C}}$ orbit must intersect the slice in a polystable orbit.

Otherwise, using the finite dimensional GIT picture, one constructs a (smooth) degeneration

$$\pi:\chi\to\mathbb{C}$$

where the central fiber χ_0 admits a cscK metric. Thus $DF(\chi, \mathcal{L}) = 0$, but χ is not a product.

Thank You