<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class=""><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Sayın liste üyeleri,</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">GGTI online seminerlerine başlıyoruz. Konuşmaların seviyelerinin katılımcıların sorularıyla belirlendiği bir öğrenme ortamı hedefliyoruz. Aşağıda yer alan linki listede olmayan ve faydalanacağını/ilgileneceğini düşündüğünüz kişilerle, özellikle öğrencilerle paylaşırsanız çok seviniriz. </div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class=""><a href="http://gokovagt.org/institute/doku.php?id=events:2021:lectureseries" class="">http://gokovagt.org/institute/doku.php?id=events:2021:lectureseries</a> </div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Görüşmek dileğiyle</div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Eylem & Üstün</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">----------------------------------</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Date: July 26-30, 2021</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Speaker: Mahir Bilen Can (Tulane University)</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Title: Lie Groups and Algebraic Groups in Action</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Abstract: The purpose of our lectures is to give a short but self-contained overview of some well-known results about the geometry of algebraic group actions. We will focus mainly on the actions of connected reductive groups. Our main goals are 1) introducing some interesting examples of equivariant completions of homogeneous spaces, 2) explaining several combinatorial gadgets such as valuation cones, weight monoids, colors, etc. that are not only useful for classifying algebraic actions of low complexity but also essential for understanding these equivariant completions. Along the way, we will review some representation theory. In addition, we will analyze some concrete examples of combinatorial varieties such as toric and Schubert varieties.</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Lecture 1 Monday, July 26 at 6 AM (PT), 9 AM (EDT), 4 PM (TRT)</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Lecture 2 Tuesday, July 27 at 6 AM (PT), 9 AM (EDT), 4 PM (TRT)</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Lecture 3 Wednesday, July 28 at 6 AM (PT), 9 AM (EDT), 4 PM (TRT)</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Lecture 4 Thursday, July 29 at 6 AM (PT), 9 AM (EDT), 4 PM (TRT)</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Lecture 5 Friday, July 30 at 6 AM (PT), 9 AM (EDT), 4 PM (TRT)</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">-----------------------------------</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Date: August 23-26, 2021</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Speakers: Joé Brendel (University of Neuchâtel) and Felix Schlenk (University of Neuchâtel)</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Title: Toric Symplectic Manifolds</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Abstract: Toric symplectic manifolds are symplectic manifolds with an effective Hamiltonian torus action of maximal dimension. Toric manifolds are distinguished by the property that they can be reconstructed from a combinatorial object called the moment polytope. Thus they are a great playground for symplectic topology and the study of Lagrangian submanifolds, since complicated invariants may be reduced to combinatorial properties of the corresponding moment polytope. In recent years, there has been much interest in a generalization called “almost toric” structures.</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">In these four lectures, we will introduce these two classes of symplectic manifolds, and use their special structure to study Lagrangian tori and symplectic embedding problems.</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Lecture 1. Monday, August 23 at 6 AM (PT), 9 AM (EDT), 4 PM (TRT)</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">The Delzant construction by Joé Brendel</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Lecture 2. Tuesday, August 24 at 6 AM (PT), 9 AM (EDT), 4 PM (TRT)</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Versal deformations and the Chekanov torus by Joé Brendel</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Lecture 3. Wednesday, August 25 at 6 AM (PT), 9 AM (EDT), 4 PM (TRT)</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Almost toric symplectic fibrations by Felix Schlenk</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Lecture 4. Thursday, August 26 at 6 AM (PT), 9 AM (EDT), 4 PM (TRT)</div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 14px;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class="">Three applications (maximal embeddings of ellipsoids, exotic Lagrangian tori, and non-isotopic cube embeddings) by Felix Schlenk</div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class=""><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class=""><br class=""></div><div class=""><br class=""></div></body></html>