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Mon: Expository talk.
e Lecture 1 (Parts |, II): Holonomy & Gg-Geometry

Tue: Expository talk.
o Lecture 1 (Part Il): Associatives & Coassociatives
e Lecture 2: Nearly-Kahler Geometry & Holomorphic Curves

Wed: Research talk.
e Lecture 3: Closed Holomorphic Curves in S°

Fri: Research talk.
e Lecture 4: Free-Boundary Holomorphic Curves in NK 6-Mflds
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I. Holonomy
@ Definition & Properties

@ Berger's List
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I. Holonomy
@ Definition & Properties
@ Berger's List

Il. Go Geometry
@ The Octonions
@ Gy-Structures on 7-Manifolds
@ Gg Holonomy on 7-Manifolds

@ Examples

I1l. Special Submanifolds
o Calibrations
@ Associative 3-folds

@ Coassociative 4-folds
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Holonomy: Definition

Let (M™, g) connected Riemannian manifold.
Let v: [0,1] — M loop at x € M. Consider:

Py: TuM — T, M

P, (v) = parallel translation of v around ~
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Holonomy: Definition

Let (M™, g) connected Riemannian manifold.
Let v: [0,1] — M loop at x € M. Consider:
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Holonomy: Definition

Let (M™, g) connected Riemannian manifold.
Let v: [0,1] — M loop at x € M. Consider:

Py: TuM — T, M

P, (v) = parallel translation of v around ~
Holonomy group of (M, g) at x € M:
Hol(g)|, = {Py € GL(T,M): ~y loop at z}.
Reduced holonomy group of (M, g) at x € M:
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Holonomy: Definition

Let (M™, g) connected Riemannian manifold.
Let v: [0,1] — M loop at x € M. Consider:

Py: TuM — T, M

P, (v) = parallel translation of v around ~
Holonomy group of (M, g) at x € M:
Hol(g)|, = {Py € GL(T,M): ~y loop at z}.
Reduced holonomy group of (M, g) at x € M:
Hol’(g)| = {P, € GL(TM): v null-homotopic loop at z}.
Group structure is via loop concatenation (just like for w1 (M, x)):
Py o Py = Pag (Po)™' = Py

where @ is the reverse path of a.
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Holonomy: Properties

Parallel translation is an isometry. So:

Hol(g)|. < O(T, M) Hol%(g)|. < SO(T,M).
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Holonomy: Properties

Parallel translation is an isometry. So:
Hol(g)]. < O(T M) Hol’(g)]. < SO(T, M).
Basepoint Independence. Let «y path from z to y. Then

Hol(g)l, = Py o Hol(g)|, o P,

.. Can speak of Hol(g) and Hol"(g) as groups defined up to conjugation.
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Holonomy: Properties

Parallel translation is an isometry. So:
Hol(g)|. < O(T M) Hol’(g)|. < SO(T,M).
Basepoint Independence. Let «y path from z to y. Then
Hol(g)l, = Py o Hol(g)|, o P,

.. Can speak of Hol(g) and Hol"(g) as groups defined up to conjugation.

Properties:
e Hol’(g) is connected.
e Hol%(g) < Hol(g). (M simply-connected = Hol’(g) = Hol(g).)
e Hol%(g) is the identity component of Hol(g).
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Holonomy: Properties

Parallel translation is an isometry. So:
Hol(g)]. < O(T M) Hol’(g)]. < SO(T, M).
Basepoint Independence. Let «y path from z to y. Then

Hol(g)l, = Py o Hol(g)|, o P,

.. Can speak of Hol(g) and Hol"(g) as groups defined up to conjugation.

Properties:
e Hol’(g) is connected.
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Holonomy: Properties

Parallel translation is an isometry. So:
Hol(g)]. < O(T M) Hol’(g)]. < SO(T, M).
Basepoint Independence. Let «y path from z to y. Then

Hol(g)l, = Py o Hol(g)|, o P,

.. Can speak of Hol(g) and Hol"(g) as groups defined up to conjugation.

Properties:
e Hol’(g) is connected.
e Hol%(g) < Hol(g). (M simply-connected = Hol’(g) = Hol(g).)
e Hol%(g) is the identity component of Hol(g).
e (Borel-Lichnerowicz) Hol%(g) is a closed Lie subgroup of SO(n).

. Hol%(g) is a compact connected Lie group.
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Holonomy Algebra; Holonomy Representation

Hol’(g)|. < SO(T, M) is a compact connected Lie group. Call its Lie
algebra
hol(g)la € so(ToM) = A*(T; M)

the holonomy algebra of (M, g).
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Holonomy Algebra; Holonomy Representation

Hol’(g)|. < SO(T, M) is a compact connected Lie group. Call its Lie
algebra
hol(g)]x € so(T, M) = A*(T; M)

the holonomy algebra of (M, g).

Remark: Hol%(g)|, is not just an abstract group: It comes with an
embedding into SO(T, M) (i.e.: There is an obvious action on T, M).

.. Can think of Hol(g) < SO(n) as a representation.
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Holonomy Algebra; Holonomy Representation

Hol’(g)|. < SO(T, M) is a compact connected Lie group. Call its Lie
algebra
hol(g)]x € so(T, M) = A*(T; M)

the holonomy algebra of (M, g).

Remark: Hol%(g)|, is not just an abstract group: It comes with an
embedding into SO(T, M) (i.e.: There is an obvious action on T, M).

.. Can think of Hol(g) < SO(n) as a representation.

Question: Why is the holonomy of (M, g) important?
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Holonomy Algebra; Holonomy Representation

Hol’(g)|. < SO(T, M) is a compact connected Lie group. Call its Lie

algebra
hol(g)l.. € s0(T, M) =2 A*(T; M)

the holonomy algebra of (M, g).

Remark: Hol%(g)|, is not just an abstract group: It comes with an
embedding into SO(T, M) (i.e.: There is an obvious action on T, M).

.. Can think of Hol(g) < SO(n) as a representation.

Question: Why is the holonomy of (M, g) important? Answer:
Holonomy is intimately related to:

e Curvature

o Parallel tensor fields

e Extra geometric structure (compatible with g)
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Holonomy & Curvature

Let T = T, M. The Riemann curvature tensor Rm(g) € (T*)®* at
x € M has various symmetries (e.g.: Rijxe = —Rjie = —Rijok):

Rm(g)l. € Sym*(A*(T™))  (T*)®*
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Holonomy & Curvature

Let T = T, M. The Riemann curvature tensor Rm(g) € (T*)®* at
x € M has various symmetries (e.g.: Rijxe = —Rjie = —Rijok):

Rm(g)l. € Sym*(A*(T™))  (T*)®*

Fact: The holonomy algebra constrains the curvature:

Rm(g)|. € Sym*(hol(g)[.) C Sym?(A*(T™)).
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Holonomy & Curvature

Let T = T, M. The Riemann curvature tensor Rm(g) € (T*)®* at
x € M has various symmetries (e.g.: Rijxe = —Rjie = —Rijok):

Rm(g)l. € Sym*(A*(T™))  (T*)®*

Fact: The holonomy algebra constrains the curvature:

Rm(g). € Sym*(hol(g)|.) C Sym*(A*(T™)).

Ambrose-Singer Theorem ('53): The holonomy algebra is generated
by the curvature:
The holonomy algebra hol(g)|, C so(T. M) is the subspace spanned

by
{P';l oR(X,Y)|, 0Py | ~ path from z toy, X,Y € TyM}
where R(X,Y)|, € so(T,M) is the Riemann curvature endomorphism.

Jesse Madnick Intro to Go-Geometry



Holonomy & Parallel Tensors

The holonomy representation determines which tensor fields S are
parallel (i.e.: VS =0):
Holonomy Principle: Let x € M.

(a) If S parallel tensor field, then S|, fixed by the Hol(g)|,-action on
T, M.

(b) If Sy fixed by the Hol(g)|,-action on T, M, then there is a unique
parallel tensor field S with S|, = S.
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Holonomy & Extra Geometric Structure

Let (M™, g) Riemannian n-manifold.

Theorem: Let G < O(n). The following are equivalent:

(i) Hol(g) < G.

(ii) There exists a G-structure on M that is g-compatible and
torsion-free.

We won't define the terms “G-structure” or “g-compatible” or
“torsion-free" here.
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Holonomy & Extra Geometric Structure

Let (M™, g) Riemannian n-manifold.

Theorem: Let G < O(n). The following are equivalent:

(i) Hol(g) < G.

(ii) There exists a G-structure on M that is g-compatible and
torsion-free.

We won't define the terms “G-structure” or “g-compatible” or
“torsion-free" here.

Example: Let (M",g) have n even. Consider G = U(%) < O(n).
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Holonomy & Extra Geometric Structure

Let (M™, g) Riemannian n-manifold.

Theorem: Let G < O(n). The following are equivalent:

(i) Hol(g) < G.

(ii) There exists a G-structure on M that is g-compatible and
torsion-free.

We won't define the terms “G-structure” or “g-compatible” or
“torsion-free" here.

Example: Let (M",g) have n even. Consider G = U(%) < O(n).
A “torsion-free U(%)-structure” is just a "Kahler structure”: A pair
(g,J), where J is a g-parallel, g-orthogonal complex structure.
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Holonomy & Extra Geometric Structure

Let (M™, g) Riemannian n-manifold.

Theorem: Let G < O(n). The following are equivalent:

(i) Hol(g) < G.

(ii) There exists a G-structure on M that is g-compatible and
torsion-free.

We won't define the terms “G-structure” or “g-compatible” or
“torsion-free" here.

Example: Let (M",g) have n even. Consider G = U(%) < O(n).
A “torsion-free U(%)-structure” is just a "Kahler structure”: A pair
(g,J), where J is a g-parallel, g-orthogonal complex structure. Therefore:

Hol(g) < U(3) <= g is a Kahler metric.
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Holonomy: Classification (Products)

Products: If g 2 g1 X go, then Hol(g) = Hol(g1) x Hol(g2).
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Holonomy: Classification (Products)

Products: If g 2 g1 X go, then Hol(g) = Hol(g1) x Hol(g2).

Def: Let (M, g) Riemannian. Say:

e g globally reducible if: g = g X ga.

e g locally reducible if: Every point in M has globally reducible
neighborhood.

e g irreducible if: g is not locally reducible.
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Holonomy: Classification (Products)

Products: If g 2 g1 X go, then Hol(g) = Hol(g1) x Hol(g2).

Def: Let (M, g) Riemannian. Say:

e g globally reducible if: g = g X ga.

e g locally reducible if: Every point in M has globally reducible
neighborhood.

e g irreducible if: g is not locally reducible.

.. g globally reducible = Hol(g) is a product of holonomy groups &
The Hol(g)-representation is reducible. Conversely:
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Holonomy: Classification (Products)

Products: If g 2 g1 X go, then Hol(g) = Hol(g1) x Hol(g2).

Def: Let (M, g) Riemannian. Say:

e g globally reducible if: g = g X ga.

e g locally reducible if: Every point in M has globally reducible
neighborhood.

e g irreducible if: g is not locally reducible.

.. g globally reducible = Hol(g) is a product of holonomy groups &
The Hol(g)-representation is reducible. Conversely:

de Rham Decomposition: Suppose Hol(g)|.-representation is reducible
at some z € M. Then:

e (Local) Hol%(g) is a product group and g locally reducible.

e (Global) If also (M, g) is complete and simply connected, then
Hol(g) is a product of holonomy groups and g globally reducible.
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Holonomy: Classification (Locally Symmetric Spaces)

Say (M, g) is locally symmetric if:
VR =0.

Equiv: (M, g) is locally isometric to a simply-connected Riemannian
symmetric space.
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Holonomy: Classification (Locally Symmetric Spaces)

Say (M, g) is locally symmetric if:
VR =0.

Equiv: (M, g) is locally isometric to a simply-connected Riemannian
symmetric space.

E. Cartan (1927): Classified simply-connected Riemannian symmetric
spaces.
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Holonomy: Classification (Locally Symmetric Spaces)

Say (M, g) is locally symmetric if:

VR =0.
Equiv: (M, g) is locally isometric to a simply-connected Riemannian
symmetric space.

E. Cartan (1927): Classified simply-connected Riemannian symmetric
spaces.

.". Holonomy groups of locally symmetric spaces are classified.
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Holonomy: Classification (Locally Symmetric Spaces)

Say (M, g) is locally symmetric if:

VR =0.
Equiv: (M, g) is locally isometric to a simply-connected Riemannian
symmetric space.

E. Cartan (1927): Classified simply-connected Riemannian symmetric
spaces.

.". Holonomy groups of locally symmetric spaces are classified.
Summary: If g locally reducible, or g locally symmetric, then we

understand Hol"(g).
What about the other cases (g not locally reducible and g not locally

symmetric)?
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Holonomy: Berger's List

Berger’s List (’55): Let (M™,g) simply-connected. Assume g not
locally reducible, not locally symmetric. Then Hol(g) is one of:
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Holonomy: Berger's List

Berger’s List (’55): Let (M™,g) simply-connected. Assume g not
locally reducible, not locally symmetric. Then Hol(g) is one of:

’ Hol(g) \ dim \ Name \ Curvature ‘

SO(n)

u(s) n=2m

SU(%) n=2m

Sp(%) n=4m

Sp(1)Sp(1) | 1 = dm

GQ n==17

Spin(7) n=2_8

Spin(9) n = 16
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Holonomy: Berger's List

Berger’s List (’55): Let (M™,g) simply-connected. Assume g not
locally reducible, not locally symmetric. Then Hol(g) is one of:

[ Hol(g) | dim | Name | Curvature |

SO(n)

u(s) n=2m

SU(%) n=2m

Sp(%) n=4m

Sp(1)Sp(1) | 1 = dm

GQ n==17

Spin(7) n=2_8

Spin(9) n = 16

Alekseevsky ('68), Brown-Gray ('72): Hol = Spin(9) = Symmetric
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Holonomy: Berger's List

Berger’s List ('55): Let (M™,g) simply-connected. Assume g not
locally reducible, not locally symmetric. Then Hol(g) is one of:

[ Hol(g) | dim | Name | Curvature |

SO(n)

u(3) n=2m

SU(%) n=2m

Sp(%) n=4m

Sp()Sp(1) | n = dm

G2 n="7

Spin(7) n=_8
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Holonomy: Berger's List

Berger’s List ('55): Let (M™,g) simply-connected. Assume g not
locally reducible, not locally symmetric. Then Hol(g) is one of:

[ Hol(g) | dim | Name | Curvature |
SO(n)
u(3) n = 2m | Kahler
SU(%) n = 2m | Calabi-Yau
Sp(%) n = 4m | Hyperkahler
Sp(%)Sp(1) | n=4m | Quat. Kahler
G2 n="7
Spin(7) n=_8
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Holonomy: Berger's List

Berger’s List ('55): Let (M™,g) simply-connected. Assume g not
locally reducible, not locally symmetric. Then Hol(g) is one of:

[ Hol(g) | dim | Name | Curvature |
SO(n)
u(3) n = 2m | Kahler
SU(%) n = 2m | Calabi-Yau Ricci-flat
Sp(%) n = 4m | Hyperkahler | Ricci-flat
Sp(%)Sp(1) | »=4m | Quat. Kahler | Einstein
Gy n==7 Ricci-flat
Spin(7) n=238 Ricci-flat
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Holonomy: Berger's List

Berger’s List ('55): Let (M™,g) simply-connected. Assume g not
locally reducible, not locally symmetric. Then Hol(g) is one of:

[ Hol(g) | dim | Name | Curvature |
SO(n)
u(3) n = 2m | Kahler
SU(%) n = 2m | Calabi-Yau Ricci-flat
Sp(%) n = 4m | Hyperkahler | Ricci-flat
Sp(%)Sp(1) | »=4m | Quat. Kahler | Einstein
Gy n==7 Ricci-flat
Spin(7) n=238 Ricci-flat

Open: Are there compact, Ricci-flat (M™, g) with Hol(g) = SO(n)?
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Holonomy: Berger's List

Berger’s List ('55): Let (M™,g) simply-connected. Assume g not
locally reducible, not locally symmetric. Then Hol(g) is one of:

[ Hol(g) | dim | Name | Curvature |
SO(n)
u(3) n = 2m | Kahler
SU(%) n = 2m | Calabi-Yau Ricci-flat
Sp(%) n = 4m | Hyperkahler | Ricci-flat
Sp(%)Sp(1) | »=4m | Quat. Kahler | Einstein
Gy n==7 Ricci-flat
Spin(7) n=238 Ricci-flat

Open: Are there compact, Ricci-flat (M™, g) with Hol(g) = SO(n)?

Open: Are there compact, Ricci-flat, irreducible (M5, g)?
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Holonomy: Berger's List

Berger’s List ('55): Let (M™, g) simply-connected. Assume g not
locally reducible, not locally symmetric. Then Hol(g) is one of:

[ Hol(g) | dim | Name | Curvature |
SO(n)
u(s) n =2m | Kahler
SU(%) n = 2m | Calabi-Yau Ricci-flat
Sp(%) n = 4m | Hyperkahler | Ricci-flat
Sp(%)Sp(1) | n=4m | Quat. Kahler | Einstein
Gy n==7 Ricci-flat
Spin(7) n=_8 Ricci-flat
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I. Holonomy
@ Definition & Properties

@ Berger's List

Il. Go Geometry
@ The Octonions
@ Go-Structures on 7-Manifolds
@ Gy Holonomy on 7-Manifolds

@ Examples

[1l. Special Submanifolds
@ Calibrations
@ Associative 3-folds

@ Coassociative 4-folds
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The Octonions and G,

The Lie group G, is intimately related to the octonions O ~ R3.
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The Octonions and G,

The Lie group G, is intimately related to the octonions O ~ R3.

Fact: Let A be a normed division algebra. Define
Aut(A) :={g € GL(A): g(zy) = g(x)g(y), Va,y € A}.

Then:

One can take Gy = Aut(QO) as the definition of G,.
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The Octonions and G,

The Lie group G, is intimately related to the octonions O ~ R3.

Fact: Let A be a normed division algebra. Define
Aut(A) :={g € GL(A): g(zy) = g(x)g(y), Va,y € A}.

Then:

One can take Gy = Aut(QO) as the definition of G,.

.. To understand G, we need to understand O.
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Normed Division Algebras

A normed division algebra is a pair (4, (-,-)) where:
e A is a finite-dim R-algebra (not necessarily associative) with unit 1;
e (-,-} is a positive-definite inner product whose norm || - || satisfies

leyll = llllllyll, v,y € A.
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Normed Division Algebras

A normed division algebra is a pair (4, (-,-)) where:
e A is a finite-dim R-algebra (not necessarily associative) with unit 1;
e (-,-} is a positive-definite inner product whose norm || - || satisfies

leyll = llllllyll, v,y € A.

Hurwitz Theorem: The only normed division algebras are:

R,C,H,O.
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Normed Division Algebras

A normed division algebra is a pair (4, (-,-)) where:
e A is a finite-dim R-algebra (not necessarily associative) with unit 1;
e (-,-} is a positive-definite inner product whose norm || - || satisfies

leyll = llllllyll, v,y € A.

Hurwitz Theorem: The only normed division algebras are:
R,C, H, Q.

(Note: Generalizing “normed division algebra” to allow (-,-) non-deg.

(not just positive-definite), one gets three more algebras: C, H, Q.)
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Normed Division Algebras

A normed division algebra is a pair (4, (-,-)) where:
e A is a finite-dim R-algebra (not necessarily associative) with unit 1;
e (-,-} is a positive-definite inner product whose norm || - || satisfies

leyll = llllllyll, v,y € A.

Hurwitz Theorem: The only normed division algebras are:
R,C, H, Q.

(Note: Generalizing “normed division algebra” to allow (-,-) non-deg.

(not just positive-definite), one gets three more algebras: C, H, Q.)

Def (unhelpful): The octonions © are the normed division algebra that
isn't R, C, H.
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Def (8 =4 + 4): The octonions O = H & H are pairs of quaternions
with multiplication law

(a,b) - (c,d) := (ac — db, da + bc).
The inner product (-, ) is the standard one on R® = R* @ R*.
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Def (8 =4 + 4): The octonions O = H & H are pairs of quaternions
with multiplication law

(a,b) - (c,d) := (ac — db, da + bc).
The inner product (-, ) is the standard one on R® = R* @ R*.

Def (8 =1+ 7): The octonions O = spang(1,e1,...,e7) are objects of
the form

r=x9+x161 + -+ 27€7

with multiplication defined by the table:

[ [ e [ ez [ es [ ea [ es [ s [ er |
€1 -1 €3 —€9 €5 —€4 er —€g
() —es3 —1 €1 €g —er —€4 €5
€3 €9 —€q -1 —e7 —€g €5 €4
€eq —es5 —€g (&4 -1 €1 €9 —€3
€5 €4 (&rd (& —e1 -1 —€3 —€9
e || —er ey —e5 | —es es -1 el
€7 €6 —€5 —€4 €3 €9 —€1 -1
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Algebra with O

Let Re(Q) := span(1) ~ R and Im(Q) := span(ey,...,e7) ~R7, so
0 = Re(0) @ Im(0) ~R & R".
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Algebra with O

Let Re(Q) := span(1) ~ R and Im(Q) := span(ey,...,e7) ~R7, so
0 = Re(0) @ Im(0) ~R & R".

Writing z € O as © = Re(z) 4 Im(z), define

T := Re(x) — Im(x).
Note: Re(z) = 1 (z + Z) and Im(z) = §(z — 7). Careful:
7 = J7.
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Algebra with O

Let Re(Q) := span(1) ~ R and Im(Q) := span(ey,...,e7) ~R7, so
0 = Re(0) @ Im(0) ~R & R".

Writing z € O as © = Re(z) 4 Im(z), define
Re(z) — Im(z).

Note: Re(z) = 1 (z + Z) and Im(z) = §(z — 7). Careful:

T

=77

g
<

Identities: Let z,y,z € Q. Then:
(z2,y2) = (z,9)||2]1* = (22, 2y)
(,y) = Re(ay) = Re(zy).
and
rly = 2y=-—yzT.
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Algebra with O

Let Re(Q) := span(1) ~ R and Im(Q) := span(ey,...,e7) ~R7, so
0 = Re(0) @ Im(0) ~R & R".

Writing z € O as © = Re(z) 4 Im(z), define
Re(z) — Im(z).

Note: Re(z) = 1 (z + Z) and Im(z) = §(z — 7). Careful:

T

=77

g
<

Identities: Let z,y,z € Q. Then:
(w2,y2) = (z.y)l|z]|* = (22, 29)
(z,y) = Re(2y) = Re(zy).
and
rly = 2y=-—yzT.
The octonions are not associative, but they are alternative:

a(zy) = 2’y (zy)y = zy? (zy)z = z(yz).



Geometry of Im(Q) = R’

Im(0) ~ R7 carries special geometric structures:

e The vector cross product x: A?(R") — R:

z Xy = 3(zy —yz) = —Im(yz).

Facts: X is alternating, satisfies x x y L z, and ||z x y|| = ||z A y]|.
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Geometry of Im(Q) = R’

Im(0) ~ R7 carries special geometric structures:

e The vector cross product x: A?(R") — R:

z Xy = 3(zy —yz) = —Im(yz).
Facts: X is alternating, satisfies x x y L z, and ||z x y|| = ||z A y]|.

e The associative 3-form ¢ € A3(R7):

(bo(I,y,Z) = <LL‘ X y,Z>
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Geometry of Im(Q) = R’

Im(0) ~ R7 carries special geometric structures:

e The vector cross product x: A?(R") — R:
z Xy = 3(zy —yz) = —Im(yz).
Facts: X is alternating, satisfies x x y L z, and ||z x y|| = ||z A y]|.
e The associative 3-form ¢ € A3(R7):
do(x,y,2) == (x Xy, z).

Let {1,e1,ez,...,e7} the standard basis of O ~ RS. Then:
o = €123 4 (15 | (16T | 26 _ 25T _ 347 _ (356

€ — €

where ¢k := ¢t A eI A ek
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Geometry of Im(Q) = R’

Im(0) ~ R7 carries special geometric structures:

e The vector cross product x: A?(R") — R:
z Xy = 3(zy —yz) = —Im(yz).
Facts: X is alternating, satisfies x x y L z, and ||z x y|| = ||z A y]|.
e The associative 3-form ¢ € A3(R7):
do(x,y,2) == (x Xy, z).

Let {1,e1,ez,...,e7} the standard basis of O ~ RS. Then:

b = €123 4 o145 | 167 4 (246 _ ;257 _ 34T _ ;356

where ¢k := ¢t A eI A ek

Analogy: In C" = R?", the Kahler 2-form is w(z,y) := (Jz,y).
The pair (J,w) on R?" is analogous to (x,¢g) on R7.
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Im(OQ) and Go

Let V = R". For each 3-form v € A3(V*), define a symmetric bilinear
form

B,: Sym*(V) — AT(V*)
B’y(fv y) = % (Lay) A (Ly'Y) A7y
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Im(OQ) and Go

Let V = R". For each 3-form v € A3(V*), define a symmetric bilinear
form

B,: Sym*(V) — AT(V*)
By (z,y) == § () A (7)) A
Say v € A3(V*) is definite if B, is definite. Let

A% (V*) := {Definite 3-forms} C A*(V*).
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Im(OQ) and Go

Let V = R". For each 3-form v € A3(V*), define a symmetric bilinear
form

B,: Sym*(V) — AT(V*)
By (z,y) == § () A (7)) A
Say v € A3(V*) is definite if B, is definite. Let

A% (V*) := {Definite 3-forms} C A*(V*).

Upshot: If v is definite, then

£ (L) A (tyy) Ay = gy(z,y) vol,

for some positive-definite inner product g, and orientation form vol., on
vV =R".
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Im(OQ) and Go

Consider the usual GL7(R)-action on V =R". This gives a
GL7(R)-action on A?(V*) via change-of-coordinates (pullback):

v ATy
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Im(OQ) and Go

Consider the usual GL7(R)-action on V =R". This gives a
GL7(R)-action on A?(V*) via change-of-coordinates (pullback):

v ATy

Fundamental Facts: Let ¢y € A?(V*) the associative 3-form.
(a) The orbit of ¢ is the set of definite 3-forms:

{A*¢g: A € GLz(R)} = A3 (V™).
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Im(OQ) and Go

Consider the usual GL7(R)-action on V =R". This gives a
GL7(R)-action on A?(V*) via change-of-coordinates (pullback):

v ATy

Fundamental Facts: Let ¢y € A?(V*) the associative 3-form.
(a) The orbit of ¢ is the set of definite 3-forms:

{A*¢o: A € GL7(R)} = A% (V™).
(b) (Bryant) The stabilizer of ¢y is the Lie group Go:
Gy = {A S GL7(R) A*¢0 = ¢0}

Go-geometers often regard this as a working definition of Gs.
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Im(OQ) and Go

Consider the usual GL7(R)-action on V =R". This gives a
GL7(R)-action on A?(V*) via change-of-coordinates (pullback):

v ATy

Fundamental Facts: Let ¢y € A?(V*) the associative 3-form.
(a) The orbit of ¢ is the set of definite 3-forms:

{A*¢o: A € GL7(R)} = A% (V™).
(b) (Bryant) The stabilizer of ¢y is the Lie group Go:
Gy = {A S GL7(R) A*¢0 = ¢0}

Go-geometers often regard this as a working definition of Gs.

[

Corollary: Orbit(¢) = A% (V*) is an open set in A3(V*) ~ R3°.
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G,-Structures on 7-Manifolds

Let M7 smooth 7-manifold. A Gy-structure on M7 is a definite 3-form
o € Q3(M). In other words (TFAE):
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G,-Structures on 7-Manifolds

Let M7 smooth 7-manifold. A Gy-structure on M7 is a definite 3-form
o € Q3(M). In other words (TFAE):

(i) For each x € M: |, is a definite 3-form.

i.e.: For each x € M: The symmetric bilinear form

By (v, w)|m = % (Losp) A (Lwip) A ‘P|I

is definite.

Jesse Madnick Intro to Go-Geometry



G,-Structures on 7-Manifolds

Let M7 smooth 7-manifold. A Gy-structure on M7 is a definite 3-form
o € Q3(M). In other words (TFAE):

(i) For each x € M: |, is a definite 3-form.

i.e.: For each x € M: The symmetric bilinear form

By (v, w)|m = % (Losp) A (Lwip) A ‘P|I
is definite.

(ii) For each x € M: There exists an isomorphism L: T,M — R s.t.

¢le = L*(¢0)-
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G,-Structures on 7-Manifolds

Let M7 smooth 7-manifold. A Gy-structure on M7 is a definite 3-form
o € Q3(M). In other words (TFAE):

(i) For each x € M: |, is a definite 3-form.

i.e.: For each x € M: The symmetric bilinear form
By (v, w)|m = % (Losp) A (Lwip) A ‘P|I
is definite.
(ii) For each x € M: There exists an isomorphism L: T,M — R s.t.
¢le = L*(¢o).
i.e.: For each x € M: There exists a frame (ey,...,e7) at z s.t.

Ole = €123 4 o145 | (167 4 (246 (257 ;347 _ 356
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G,-Structures on 7-Manifolds

Let M7 smooth 7-manifold. A Gy-structure on M7 is a definite 3-form
o € Q3(M). In other words (TFAE):

(i) For each x € M: |, is a definite 3-form.

i.e.: For each x € M: The symmetric bilinear form
By(v,w)l, = § (o) A (wp) Ao,
is definite.
(ii) For each x € M: There exists an isomorphism L: T,M — R s.t.
Ple = L*(¢o).
i.e.: For each x € M: There exists a frame (ey,...,e7) at z s.t.
Olo = €123 4 o145 | (167 | (246 _ (25T _ (347 _ ;356

Summary: A Gy-structure p € Q3(M) identifies

(T M, ¢l2) =~ (Im(0), ¢o).
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G,-Structures on 7-Manifolds

Fact: M7 admits a Go-structure <=> M" orientable and spin.
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G,-Structures on 7-Manifolds

Fact: M7 admits a Go-structure <=> M" orientable and spin.

o A Gy-structure ¢ € Q3(M) induces a canonical Riemannian metric g,
and orientation vol, via

g (v, w) vol, = % (Lop) A (Lwsp) A @
vol, = %go A 1%

e A Gy-structure yields a vector cross product x: TM x TM — TM
via
o(r,y,2) = go(z X y, 2).
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G,-Structures on 7-Manifolds

Fact: M7 admits a Go-structure <=> M" orientable and spin.

o A Gy-structure ¢ € Q3(M) induces a canonical Riemannian metric g,
and orientation vol, via

g (v, w) vol, = % (Lop) A (Lwsp) A @
vol, = %go A 1%

e A Gy-structure yields a vector cross product x: TM x TM — TM
via

o(r,y,2) = gp(z Xy, 2).

Warnings:

e The map ¢ — g, is not injective. Different Go-structures may
induce the same metric.

e The map ¢ > g, is highly nonlinear.

e The Hodge star « is determined by (g, vol,), which depends
nonlinearly on ¢.
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Classes of Go-Structures

Let ¢ be a Gay-structure.
e ¢ closed if: dp = 0.
e ¢ co-closed if: d*xp = 0.
e ¢ torsion-free if: dp =0 and d*p = 0.
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Classes of Go-Structures

Let ¢ be a Go-structure.
e ¢ closed if: dp = 0.
e ¢ co-closed if: dxp = 0.
e ¢ torsion-free if: dp =0 and d*p = 0.

Def: A Gy-manifold (M7, ) is a 7-manifold with a torsion-free
Go-structure o € Q3(M):

de =20 dxp=0.
Example: (R7, ) is a Go-manifold. Note Hol(go) = {Id}.

Jesse Madnick Intro to Go-Geometry



Classes of Go-Structures

Let ¢ be a Go-structure.
e ¢ closed if: dp = 0.
e ¢ co-closed if: dxp = 0.
e ¢ torsion-free if: dp =0 and d*p = 0.

Def: A Gy-manifold (M7, ) is a 7-manifold with a torsion-free
Go-structure o € Q3(M):

de =20 dxp=0.
Example: (R7, ) is a Go-manifold. Note Hol(go) = {Id}.

Q: How do Gs-manifolds relate to Go-holonomy metrics?
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Classes of Go-Structures

Let ¢ be a Go-structure.
e ¢ closed if: dp = 0.
e ¢ co-closed if: dxp = 0.
e ¢ torsion-free if: dp =0 and d*p = 0.

Def: A Gy-manifold (M7, ) is a 7-manifold with a torsion-free
Go-structure o € Q3(M):

de =20 dxp=0.
Example: (R7, ¢g) is a Go-manifold. Note Hol(gg) = {Id}.
Q: How do Gs-manifolds relate to Go-holonomy metrics?

Fernandez-Gray ('82): Let M7 orientable, spin.
(a) Let ¢ € Q3(M) be a Gao-structure.

dp=0 and dxp=0 = Hol(g,) < Gs.
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Classes of Go-Structures

Let ¢ be a Go-structure.
e ¢ closed if: dp = 0.
e ¢ co-closed if: dxp = 0.
e ¢ torsion-free if: dp =0 and d*p = 0.

Def: A Gy-manifold (M7, ) is a 7-manifold with a torsion-free
Go-structure o € Q3(M):

de =20 dxp=0.
Example: (R7, ¢g) is a Go-manifold. Note Hol(gg) = {Id}.
Q: How do Gs-manifolds relate to Go-holonomy metrics?

Fernandez-Gray ('82): Let M7 orientable, spin.
(a) Let ¢ € Q3(M) be a Gao-structure.

dp=0 and dxp=0 = Hol(g,) < Gs.
(b) Let g be a metric on M.
Hol(g) < Gs = ¢ =g, 3Go-str. ¢ with dp =0 and d*p = 0.
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Gyo-Manifolds

Fernandez-Gray ('82): Let M7 orientable, spin.
(a) Let p € Q3(M) be a Gy-structure.

dp=0 and d*p=0 = Hol(g,) < Go.
(b) Let g be a metric on M.

Hol(g) < Gy = g =g, 3Ga-str. ¢ with dp =0 and d xp = 0.
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Gyo-Manifolds

Fernandez-Gray ('82): Let M7 orientable, spin.
(a) Let p € Q3(M) be a Gy-structure.

dp=0 and d*p=0 = Hol(g,) < Go.
(b) Let g be a metric on M.
Hol(g) < Gy = g =g, 3Ga-str. ¢ with dp =0 and d xp = 0.

Bonan ('66): Every Gy-manifold is Ricci-flat.
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Gyo-Manifolds

Fernandez-Gray ('82): Let M7 orientable, spin.
(a) Let p € Q3(M) be a Gy-structure.

dp=0 and d*p=0 = Hol(g,) < Go.
(b) Let g be a metric on M.
Hol(g) < Gy = g =g, 3Ga-str. ¢ with dp =0 and d xp = 0.

Bonan ('66): Every Gy-manifold is Ricci-flat.

Bryant Criterion ('87): Let (M7, g) simply-connected, Hol(g) < Ga.
Then:

Hol(g) = Ga <= There are no (non-zero) parallel 1-forms.
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Gyo-Manifolds

Fernandez-Gray ('82): Let M7 orientable, spin.
(a) Let p € Q3(M) be a Gy-structure.

dp=0 and d*p=0 = Hol(g,) < Go.
(b) Let g be a metric on M.
Hol(g) < Gy = g =g, 3Ga-str. ¢ with dp =0 and d xp = 0.

Bonan ('66): Every Gy-manifold is Ricci-flat.

Bryant Criterion ('87): Let (M7, g) simply-connected, Hol(g) < Ga.
Then:

Hol(g) = Ga <= There are no (non-zero) parallel 1-forms.
Joyce Criterion ('96): Let (M7, g) compact, Hol(g) < Ga. Then:

Hol(g) = G2 <= w1 (M) finite.
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G2 Holonomy

Strategy: Let M” orientable, spin. To construct g with Hol(g) = Ga:
1. (Non-trivial) Construct torsion-free Go-structure . i.e.: Find
Gga-structure solving the nonlinear PDE system

de =10
d+p =0.

Then Hol(g,) < Ga.
2. Apply Bryant's Criterion or Joyce's Criterion.
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G2 Holonomy

Strategy: Let M” orientable, spin. To construct g with Hol(g) = Ga:
1. (Non-trivial) Construct torsion-free Go-structure . i.e.: Find
Gga-structure solving the nonlinear PDE system

de =10
d+p =0.

Then Hol(g,) < Ga.
2. Apply Bryant's Criterion or Joyce's Criterion.

Remark: If M” compact, then there are topological obstructions to
existence of Go-holonomy metrics. Necessary conditions are:

o 11 (M) finite

o b3(M) > 1 (where b*>(M) = dim(H?(M;R)))

e p1 (M) # 0 (where py (M) =first Pontryagin class).

Hard Open Problem: Let M7 compact (orientable, spin). Find
necessary and sufficient conditions for M7 to admit Ga-holonomy metrics.
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G2 Holonomy

Strategy: Let M” orientable, spin. To construct g with Hol(g) = Ga:
1. (Non-trivial) Construct torsion-free Go-structure . i.e.: Find
Gga-structure solving the nonlinear PDE system

de =10
d+p =0.

Then Hol(g,) < Ga.
2. Apply Bryant's Criterion or Joyce's Criterion.

Constructing torsion-free Go-structures is not easy. Most (all?) examples
use one of the following ideas:

Idea 1: 7= 6+ 1. (Build M7 from Calabi-Yau X° or nearly-Kahler X5)
Idea 2: 7=4+3.
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Local Examples

Bryant (’87): On small balls in R”: There exist Ga-holonomy metrics.
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Local Examples

Bryant (’87): On small balls in R”: There exist Ga-holonomy metrics.
The generic metric depends on 6 arbitrary functions of 6 variables (in
the sense of exterior differential systems) up to diffeomorphism.
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Local Examples

Bryant (’87): On small balls in R”: There exist Ga-holonomy metrics.
The generic metric depends on 6 arbitrary functions of 6 variables (in
the sense of exterior differential systems) up to diffeomorphism.

Bryant ('87): Constructed the first explicit example of Hol(g) = G,.
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Local Examples

Bryant (’87): On small balls in R”: There exist Ga-holonomy metrics.
The generic metric depends on 6 arbitrary functions of 6 variables (in
the sense of exterior differential systems) up to diffeomorphism.

Bryant ('87): Constructed the first explicit example of Hol(g) = G,.
Consider F® = SU(3)/T?. Equip F with a certain homogeneous
metric gr (its homogeneous nearly-Kahler metric). Then

SU(3)

M7 := Cone(F®%) = R x Tz

with cone metric
gy = dr? +rigp

has Hol(gas) = Go.
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Complete Examples

Bryant-Salamon ('89): First examples of complete metrics with
Hol(g) = G2. They found three one-parameter families.
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Complete Examples

Bryant-Salamon ('89): First examples of complete metrics with
Hol(g) = G2. They found three one-parameter families.

As smooth manifolds: Their examples are total spaces of vector bundles:
m: (M7, gar) = (B, gB).

e A3 (S*) is a rank 3 vector bundle over S*
. Ai(C]PQ) is a rank 3 vector bundle over CP?
e 5(S?) is a rank 4 vector bundle over S3
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Complete Examples

Bryant-Salamon ('89): First examples of complete metrics with
Hol(g) = G2. They found three one-parameter families.

As smooth manifolds: Their examples are total spaces of vector bundles:
m: (M7, gar) = (B, gB).

e A3 (S*) is a rank 3 vector bundle over S*
. Ai(C]PQ) is a rank 3 vector bundle over CP?
e 5(S?) is a rank 4 vector bundle over S3

Geometrically:
e Bundle metrics: Metric has form

g = f(r)a+g(r)* n*(gp)

where «/|fiper = flat metric and r = radius in fibers.
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Complete Examples

Bryant-Salamon ('89): First examples of complete metrics with
Hol(g) = G2. They found three one-parameter families.

As smooth manifolds: Their examples are total spaces of vector bundles:
T (M77gM) — (BagB)

e A3 (S*) is a rank 3 vector bundle over S*
. Ai(@]P’z) is a rank 3 vector bundle over CP?
e 5(S?) is a rank 4 vector bundle over S3

Geometrically:
e Bundle metrics: Metric has form

g = f(r)a+g(r)* n*(gp)

where «/|fiper = flat metric and r = radius in fibers.
e Symmetry: They are all cohomogeneity-one.
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Complete Examples

Bryant-Salamon ('89): First examples of complete metrics with
Hol(g) = G2. They found three one-parameter families.

As smooth manifolds: Their examples are total spaces of vector bundles:
T (M77gM) — (BagB)

e A3 (S*) is a rank 3 vector bundle over S*
. Ai(@]P’z) is a rank 3 vector bundle over CP?
e 5(S?) is a rank 4 vector bundle over S3

Geometrically:
e Bundle metrics: Metric has form

g = f(r)a+g(r)* n*(gp)

where «/|fiper = flat metric and r = radius in fibers.
e Symmetry: They are all cohomogeneity-one.
e At infinity: They are all asymptotic to Go-holonomy cones.
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Compact Examples: Joyce's Theorem

Idea: Let (M7, ) compact with closed Gy-structure that is “almost”
co-closed:
dp =0 and d=*yp small.

Then maybe one could perturb ¢ ~ @ where @ is torsion-free.
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Compact Examples: Joyce's Theorem

Idea: Let (M7, ) compact with closed Gy-structure that is “almost”

co-closed:
dp =0 and d=*yp small.

Then maybe one could perturb ¢ ~ @ where @ is torsion-free.

An almost Gs-structure (p,)) is a closed Gy-structure ¢ and a 3-form
1 such that d*p = d*¥.
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Compact Examples: Joyce's Theorem

Idea: Let (M7, ) compact with closed Gy-structure that is “almost”
co-closed:
dp =0 and d=*yp small.

Then maybe one could perturb ¢ ~ @ where @ is torsion-free.

An almost Gs-structure (p,)) is a closed Gy-structure ¢ and a 3-form
1 such that d*p = d*¥.

Joyce’s Perturbation Theorem ('96): Fix constants Ay, As, A3 > 0.
Then there exists an interval (0,7] with T' > 0 and a constant K > 0
such that:
If M7 compact has a one-parameter family (0t ¥t )reo,r) of almost

Go-structures satisfying

(a) |ellze < Art* and |[9h¢]|co < Art/? and ||d*o|| s < Ay

(b) inj(th) > Ast

() |1 R(go)llco < Ast™?

then M7 admits torsion-free Gy-structures @; with

15 — @illco < Kt'2.
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Compact Examples

Finding compact (M7, ) with dp = 0 and d *p small is very hard, but
examples are known:
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Compact Examples

Finding compact (M7, ) with dp = 0 and d *p small is very hard, but
examples are known:

Compact 7-Manifolds with G; Holonomy:
e Joyce ('96): G Kummer Construction
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Compact Examples

Finding compact (M7, ) with dp = 0 and d *p small is very hard, but
examples are known:

Compact 7-Manifolds with G; Holonomy:
e Joyce ('96): G Kummer Construction

o Twisted Connected Sum Construction
o Kovalev ('03)
o Corti-Haskins-Nordstrom-Pacini ('12)
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Compact Examples

Finding compact (M7, ) with dp = 0 and d *p small is very hard, but
examples are known:

Compact 7-Manifolds with G; Holonomy:
e Joyce ('96): G Kummer Construction

o Twisted Connected Sum Construction
o Kovalev ('03)
o Corti-Haskins-Nordstrom-Pacini ('12)

e Joyce-Karigiannis ('17)
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Compact Examples

Finding compact (M7, ) with dp = 0 and d *p small is very hard, but
examples are known:

Compact 7-Manifolds with G; Holonomy:
e Joyce ('96): G Kummer Construction

o Twisted Connected Sum Construction
o Kovalev ('03)
o Corti-Haskins-Nordstrom-Pacini ('12)

e Joyce-Karigiannis ('17)

Open Questions:
o If M7 compact admits closed Ga-structure, must it also admit a
torsion-free Go-structure?

Jesse Madnick Intro to Go-Geometry



Compact Examples

Finding compact (M7, ) with dp = 0 and d *p small is very hard, but
examples are known:

Compact 7-Manifolds with G; Holonomy:
e Joyce ('96): G Kummer Construction
o Twisted Connected Sum Construction
o Kovalev ('03)
o Corti-Haskins-Nordstrom-Pacini ('12)

e Joyce-Karigiannis ('17)
Open Questions:
o If M7 compact admits closed Ga-structure, must it also admit a

torsion-free Go-structure?
e Does S7 admit a closed Gy-structure?
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Compact Examples

Finding compact (M7, ) with dp = 0 and d *p small is very hard, but
examples are known:

Compact 7-Manifolds with G; Holonomy:
e Joyce ('96): G Kummer Construction
o Twisted Connected Sum Construction
o Kovalev ('03)
o Corti-Haskins-Nordstrom-Pacini ('12)

e Joyce-Karigiannis ('17)

Open Questions:

o If M7 compact admits closed Ga-structure, must it also admit a
torsion-free Go-structure?

e Does S7 admit a closed Gy-structure?

e How can we distinguish Gg-holonomy 7-manifolds?
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I. Holonomy
@ Definition & Properties

@ Berger's List

Il. Go Geometry
@ The Octonions
@ Gy-Structures on 7-Manifolds
@ Gy Holonomy on 7-Manifolds

@ Examples

[11. Special Submanifolds
@ Calibrations
@ Associative 3-folds

@ Coassociative 4-folds
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