Lecture 1: G_2 -Geometry and Associative 3-folds

Jesse Madnick National Center for Theoretical Sciences National Taiwan University

6th Geometry-Topology Summer School

Mon: Expository talk.

- Lecture 1 (Parts I, II): Holonomy & G_2 -Geometry
- **Tue:** Expository talk.
	- Lecture 1 (Part III): Associatives & Coassociatives
	- Lecture 2: Nearly-Kähler Geometry & Holomorphic Curves

Wed: Research talk.

 \bullet Lecture 3: Closed Holomorphic Curves in \mathbb{S}^6

Fri: Research talk.

• Lecture 4: Free-Boundary Holomorphic Curves in NK 6-Mflds

Outline

- I. Holonomy
	- **·** Definition & Properties
	- **•** Berger's List

Outline

- I. Holonomy
	- Definition & Properties
	- **•** Berger's List
- II. G_2 Geometry
	- The Octonions
	- G₂-Structures on 7-Manifolds
	- \bullet G₂ Holonomy on 7-Manifolds
	- **•** Examples

Outline

- I. Holonomy
	- Definition & Properties
	- **•** Berger's List
- II. G_2 Geometry
	- **The Octonions**
	- \bullet G₂-Structures on 7-Manifolds
	- \bullet G₂ Holonomy on 7-Manifolds
	- **•** Examples
- III. Special Submanifolds
	- **•** Calibrations
	- Associative 3-folds
	- **Coassociative 4-folds**

Let (M^n, g) connected Riemannian manifold. Let $\gamma: [0, 1] \to M$ loop at $x \in M$. Consider:

> $P_{\gamma}: T_xM \to T_xM$ $P_{\gamma}(v)$ = parallel translation of v around γ

Let (M^n, g) connected Riemannian manifold. Let $\gamma: [0, 1] \to M$ loop at $x \in M$. Consider:

> $P_{\gamma}: T_xM \to T_xM$ $P_{\gamma}(v)$ = parallel translation of v around γ

Holonomy group of (M, q) at $x \in M$:

 $\text{Hol}(g)|_x = \{P_\gamma \in \text{GL}(T_xM) : \gamma \text{ loop at } x\}.$

Let (M^n, q) connected Riemannian manifold. Let $\gamma: [0, 1] \to M$ loop at $x \in M$. Consider:

> $P_{\gamma}: T_xM \to T_xM$ $P_{\gamma}(v)$ = parallel translation of v around γ

Holonomy group of (M, q) at $x \in M$:

$$
Hol(g)|_x = \{P_\gamma \in GL(T_xM) \colon \gamma \text{ loop at } x\}.
$$

Reduced holonomy group of (M, q) at $x \in M$:

 $\left. \mathsf{Hol}^0(g) \right|_x = \{ P_\gamma \in \mathsf{GL}(T_x M) \colon \gamma \text{ null-homotopic loop at } x \}.$

Let (M^n, q) connected Riemannian manifold. Let $\gamma: [0, 1] \to M$ loop at $x \in M$. Consider:

> $P_{\gamma}: T_xM \to T_xM$ $P_{\gamma}(v)$ = parallel translation of v around γ

Holonomy group of (M, q) at $x \in M$:

$$
Hol(g)|_x = \{P_\gamma \in GL(T_xM) \colon \gamma \text{ loop at } x\}.
$$

Reduced holonomy group of (M, q) at $x \in M$:

 $\left. \mathsf{Hol}^0(g) \right|_x = \{ P_\gamma \in \mathsf{GL}(T_x M) \colon \gamma \text{ null-homotopic loop at } x \}.$

Group structure is via loop concatenation (just like for $\pi_1(M, x)$):

$$
P_{\alpha} \circ P_{\beta} = P_{\alpha\beta} \qquad (P_{\alpha})^{-1} = P_{\overline{\alpha}}
$$

where $\overline{\alpha}$ is the reverse path of α .

 $\text{Hol}(g)|_x \leq \text{O}(T_xM)$ $\text{Hol}^0(g)|_x \leq \text{SO}(T_xM).$

 $\text{Hol}(q)|_x \leq \text{O}(T_xM)$ $\text{Hol}^0(q)|_x \leq \text{SO}(T_xM).$

Basepoint Independence. Let γ path from x to y. Then

$$
Hol(g)|_y = P_\gamma \circ Hol(g)|_x \circ P_\gamma^{-1}
$$

∴ Can speak of Hol (g) and Hol $^{0}(g)$ as groups defined up to conjugation.

 $\left|\text{Hol}(q)\right|_x \leq \mathsf{O}(T_x M)$ $\|H_0|^0(q)\|_x \leq SO(T_xM).$

Basepoint Independence. Let γ path from x to y. Then

$$
\operatorname{Hol}(g)|_y = P_\gamma \circ \operatorname{Hol}(g)|_x \circ P_\gamma^{-1}
$$

∴ Can speak of Hol (g) and Hol $^{0}(g)$ as groups defined up to conjugation.

Properties:

- Hol $^{0}(g)$ is connected.
- Hol $\theta(g) \trianglelefteq$ Hol (g) . (*M* simply-connected \implies Hol $\theta(g)$ = Hol (g) .)
- Hol $^0(g)$ is the identity component of Hol (g) .

 $\left|\text{Hol}(q)\right|_x \leq \mathsf{O}(T_x M)$ $\|H_0|^0(q)\|_x \leq SO(T_xM).$

Basepoint Independence. Let γ path from x to y. Then

$$
\mathsf{Hol}(g)|_y = P_\gamma \circ \mathsf{Hol}(g)|_x \circ P_\gamma^{-1}
$$

∴ Can speak of Hol (g) and Hol $^{0}(g)$ as groups defined up to conjugation.

Properties:

- Hol $^{0}(g)$ is connected.
- Hol $\theta(g) \trianglelefteq$ Hol (g) . (*M* simply-connected \implies Hol $\theta(g)$ = Hol (g) .)
- Hol $^0(g)$ is the identity component of Hol (g) .
- (Borel-Lichnerowicz) $Hol^0(g)$ is a closed Lie subgroup of SO(n).

 $\left|\text{Hol}(q)\right|_x \leq \mathsf{O}(T_x M)$ $\|H_0|^0(q)\|_x \leq SO(T_xM).$

Basepoint Independence. Let γ path from x to y. Then

$$
\mathsf{Hol}(g)|_y = P_\gamma \circ \mathsf{Hol}(g)|_x \circ P_\gamma^{-1}
$$

∴ Can speak of Hol (g) and Hol $^{0}(g)$ as groups defined up to conjugation.

Properties:

- Hol $^{0}(g)$ is connected.
- Hol $\theta(g) \trianglelefteq$ Hol (g) . (*M* simply-connected \implies Hol $\theta(g)$ = Hol (g) .)
- Hol $^0(g)$ is the identity component of Hol (g) .
- (Borel-Lichnerowicz) $Hol^0(g)$ is a closed Lie subgroup of SO(n).

∴ Hol $^{0}(g)$ is a compact connected Lie group.

Holonomy Algebra; Holonomy Representation

 $\mathsf{Hol}^0(g)|_x \leq \mathsf{SO}(T_x M)$ is a compact connected Lie group. Call its Lie algebra

$$
\mathfrak{hol}(g)|_x\subset\mathfrak{so}(T_xM)\cong\Lambda^2(T_x^*M)
$$

the **holonomy algebra** of (M, g) .

 $\mathsf{Hol}^0(g)|_x \leq \mathsf{SO}(T_x M)$ is a compact connected Lie group. Call its Lie algebra

$$
\mathfrak{hol}(g)|_x\subset\mathfrak{so}(T_xM)\cong\Lambda^2(T_x^*M)
$$

the **holonomy algebra** of (M, q) .

Remark: $\text{Hol}^{0}(g)|_{x}$ is not just an abstract group: It comes with an embedding into $SO(T_xM)$ (i.e.: There is an obvious action on T_xM).

∴ Can think of Hol $^{0}(g) \leq$ SO (n) as a **representation**.

 $\mathsf{Hol}^0(g)|_x \leq \mathsf{SO}(T_x M)$ is a compact connected Lie group. Call its Lie algebra

$$
\mathfrak{hol}(g)|_x\subset\mathfrak{so}(T_xM)\cong\Lambda^2(T_x^*M)
$$

the **holonomy algebra** of (M, q) .

Remark: $\text{Hol}^{0}(g)|_{x}$ is not just an abstract group: It comes with an embedding into $SO(T_xM)$ (i.e.: There is an obvious action on T_xM).

∴ Can think of Hol $^{0}(g) \leq$ SO (n) as a **representation**.

Question: Why is the holonomy of (M, q) important?

 $\mathsf{Hol}^0(g)|_x \leq \mathsf{SO}(T_x M)$ is a compact connected Lie group. Call its Lie algebra

$$
\mathfrak{hol}(g)|_x\subset\mathfrak{so}(T_xM)\cong\Lambda^2(T_x^*M)
$$

the **holonomy algebra** of (M, q) .

Remark: $\text{Hol}^{0}(g)|_{x}$ is not just an abstract group: It comes with an embedding into $SO(T_xM)$ (i.e.: There is an obvious action on T_xM).

∴ Can think of Hol $^{0}(g) \leq$ SO (n) as a **representation**.

Question: Why is the holonomy of (M, q) important? Answer: Holonomy is intimately related to:

- Curvature
- Parallel tensor fields
- Extra geometric structure (compatible with q)

Holonomy & Curvature

Let $T=T_xM$. The Riemann curvature tensor $\mathsf{Rm}(g)\in (T^*)^{\otimes 4}$ at $x \in M$ has various symmetries (e.g.: $R_{i j k \ell} = -R_{i j k \ell} = -R_{i j \ell k}$):

 $\mathsf{Rm}(g)|_x \in \mathsf{Sym}^2(\Lambda^2(T^*)) \subset (T^*)^{\otimes 4}$

Holonomy & Curvature

Let $T=T_xM$. The Riemann curvature tensor $\mathsf{Rm}(g)\in (T^*)^{\otimes 4}$ at $x \in M$ has various symmetries (e.g.: $R_{ijk\ell} = -R_{jik\ell} = -R_{ij\ell k}$):

$$
Rm(g)|_x \in \text{Sym}^2(\Lambda^2(T^*)) \subset (T^*)^{\otimes 4}
$$

Fact: The holonomy algebra constrains the curvature:

$$
Rm(g)|_x \in \text{Sym}^2(\text{hol}(g)|_x) \subset \text{Sym}^2(\Lambda^2(T^*)).
$$

Holonomy & Curvature

Let $T=T_xM$. The Riemann curvature tensor $\mathsf{Rm}(g)\in (T^*)^{\otimes 4}$ at $x \in M$ has various symmetries (e.g.: $R_{i j k \ell} = -R_{j i k \ell} = -R_{i j \ell k}$):

$$
\mathsf{Rm}(g)|_x \in \mathsf{Sym}^2(\Lambda^2(T^*)) \subset (T^*)^{\otimes 4}
$$

Fact: The holonomy algebra constrains the curvature:

$$
Rm(g)|_x \in \text{Sym}^2(\text{hol}(g)|_x) \subset \text{Sym}^2(\Lambda^2(T^*)).
$$

Ambrose-Singer Theorem ('53): The holonomy algebra is generated by the curvature:

The holonomy algebra $\mathfrak{hol}(g)|_x \subset \mathfrak{so}(T_xM)$ is the subspace spanned by

$$
\{P_{\gamma}^{-1} \circ R(X,Y)|_{y} \circ P_{\gamma} \, \big| \, \gamma \text{ path from } x \text{ to } y, \ X, Y \in T_{y}M \}
$$

where $R(X,Y)|_y \in \mathfrak{so}(T_yM)$ is the Riemann curvature endomorphism.

The holonomy representation determines which tensor fields S are parallel (i.e.: $\nabla S = 0$):

Holonomy Principle: Let $x \in M$.

(a) If S parallel tensor field, then $S|_x$ fixed by the $Hol(g)|_x$ -action on T_xM .

(b) If S_0 fixed by the Hol $(g)|_x$ -action on T_xM , then there is a unique parallel tensor field S with $S|_x = S_0$.

Let (M^n, q) Riemannian *n*-manifold.

Theorem: Let $G \leq O(n)$. The following are equivalent: (i) Hol $(q) \leq G$. (ii) There exists a G-structure on M that is g-compatible and

torsion-free.

We won't define the terms "G-structure" or "q-compatible" or "torsion-free" here.

Let (M^n, g) Riemannian *n*-manifold.

Theorem: Let $G \leq O(n)$. The following are equivalent: (i) Hol $(q) \leq G$. (ii) There exists a G-structure on M that is g-compatible and torsion-free.

We won't define the terms "G-structure" or "q-compatible" or "torsion-free" here.

Example: Let (M^n, g) have *n* even. Consider $G = \bigcup(\frac{n}{2}) \leq O(n)$.

Let (M^n, q) Riemannian *n*-manifold.

Theorem: Let $G \leq O(n)$. The following are equivalent: (i) Hol $(q) \leq G$. (ii) There exists a G-structure on M that is g-compatible and

torsion-free.

We won't define the terms "G-structure" or "q-compatible" or "torsion-free" here.

Example: Let (M^n, g) have *n* even. Consider $G = \bigcup \left(\frac{n}{2}\right) \leq O(n)$. A "torsion-free $\mathsf{U}(\frac{n}{2})$ -structure" is just a "Kähler structure": A pair (q, J) , where J is a g-parallel, g-orthogonal complex structure.

Let (M^n, q) Riemannian *n*-manifold.

Theorem: Let $G \leq O(n)$. The following are equivalent: (i) Hol $(q) \leq G$. (ii) There exists a G-structure on M that is g-compatible and torsion-free.

We won't define the terms "G-structure" or "q-compatible" or "torsion-free" here.

Example: Let (M^n, g) have *n* even. Consider $G = \bigcup \left(\frac{n}{2}\right) \leq O(n)$. A "torsion-free $\mathsf{U}(\frac{n}{2})$ -structure" is just a "Kähler structure": A pair (q, J) , where J is a g-parallel, g-orthogonal complex structure. Therefore:

 $\text{Hol}(g) \leq \mathsf{U}(\frac{n}{2}) \iff g$ is a Kähler metric.

Holonomy: Classification (Products)

Products: If $g \cong g_1 \times g_2$, then $Hol(g) = Hol(g_1) \times Hol(g_2)$.

Holonomy: Classification (Products)

Products: If $g \cong g_1 \times g_2$, then $Hol(g) = Hol(g_1) \times Hol(g_2)$.

Def: Let (M, q) Riemannian. Say:

• q globally reducible if: $q \cong q_1 \times q_2$.

• q locally reducible if: Every point in M has globally reducible neighborhood.

• q irreducible if: q is not locally reducible.

Products: If $g \cong g_1 \times g_2$, then $Hol(g) = Hol(g_1) \times Hol(g_2)$.

Def: Let (M, q) Riemannian. Say:

• q globally reducible if: $q \cong q_1 \times q_2$.

• q locally reducible if: Every point in M has globally reducible neighborhood.

• q irreducible if: q is not locally reducible.

∴ g globally reducible \implies Hol(g) is a product of holonomy groups $\&$ The $Hol(q)$ -representation is reducible. Conversely:

Products: If $g \cong g_1 \times g_2$, then $Hol(g) = Hol(g_1) \times Hol(g_2)$.

Def: Let (M, q) Riemannian. Say:

• q globally reducible if: $q \cong q_1 \times q_2$.

• q locally reducible if: Every point in M has globally reducible neighborhood.

• q irreducible if: q is not locally reducible.

∴ g globally reducible \implies Hol(g) is a product of holonomy groups $\&$ The $Hol(q)$ -representation is reducible. Conversely:

de Rham Decomposition: Suppose $Hol(q)|_{x}$ -representation is reducible at some $x \in M$. Then:

 \bullet (Local) Hol $^{0}(g)$ is a product group and g locally reducible.

• (Global) If also (M, q) is complete and simply connected, then $Hol(q)$ is a product of holonomy groups and q globally reducible.

Say (M, q) is locally symmetric if:

 $\nabla R = 0.$

Equiv: (M, q) is locally isometric to a simply-connected Riemannian symmetric space.

Say (M, q) is locally symmetric if:

 $\nabla R = 0.$

Equiv: (M, q) is locally isometric to a simply-connected Riemannian symmetric space.

E. Cartan (1927): Classified simply-connected Riemannian symmetric spaces.

Say (M, q) is locally symmetric if:

 $\nabla R = 0.$

Equiv: (M, q) is locally isometric to a simply-connected Riemannian symmetric space.

E. Cartan (1927): Classified simply-connected Riemannian symmetric spaces.

∴ Holonomy groups of locally symmetric spaces are classified.

Say (M, q) is locally symmetric if:

 $\nabla R = 0.$

Equiv: (M, q) is locally isometric to a simply-connected Riemannian symmetric space.

E. Cartan (1927): Classified simply-connected Riemannian symmetric spaces.

∴ Holonomy groups of locally symmetric spaces are classified.

Summary: If g locally reducible, or g locally symmetric, then we understand $\mathsf{Hol}^0(g).$

What about the other cases (g not locally reducible and g not locally symmetric)?

Berger's List ('55): Let (M^n, g) simply-connected. Assume g not locally reducible, not locally symmetric. Then $Hol(g)$ is one of:

Berger's List ('55): Let (M^n, g) simply-connected. Assume g not locally reducible, not locally symmetric. Then $Hol(g)$ is one of:

Alekseevsky ('68), Brown-Gray ('72): Hol = $Spin(9) \implies Symmetric$

Open: Are there compact, Ricci-flat (M^n, g) with $Hol(g) = SO(n)$?

Open: Are there compact, Ricci-flat (M^n, g) with $Hol(g) = SO(n)$? **Open:** Are there compact, Ricci-flat, irreducible (M^5, g) ?

Outline

- I. Holonomy
	- **o** Definition & Properties
	- **•** Berger's List
- II. G₂ Geometry
	- The Octonions
	- G₂-Structures on 7-Manifolds
	- \bullet G₂ Holonomy on 7-Manifolds
	- **•** Examples
- III. Special Submanifolds
	- **o** Calibrations
	- **Associative 3-folds**
	- **Coassociative 4-folds**

The Lie group G_2 is intimately related to the octonions $\mathbb{O}\simeq \mathbb{R}^8.$

The Lie group G_2 is intimately related to the octonions $\mathbb{O}\simeq \mathbb{R}^8.$ **Fact:** Let A be a normed division algebra. Define

$$
\mathsf{Aut}(A) := \{ g \in \mathsf{GL}(A) \colon g(xy) = g(x)g(y), \ \forall x, y \in A \}.
$$

Then:

$$
\begin{aligned} \mathsf{Aut}(\mathbb{R})&=\{\mathsf{Id}\}\\ \mathsf{Aut}(\mathbb{C})&\cong\mathbb{Z}_2\\ \mathsf{Aut}(\mathbb{H})&\cong\mathsf{SO}(3)\\ \mathsf{Aut}(\mathbb{O})&\cong\mathsf{G}_2 \end{aligned}
$$

One can take $G_2 = Aut(0)$ as the **definition** of G_2 .

The Lie group G_2 is intimately related to the octonions $\mathbb{O}\simeq \mathbb{R}^8.$ **Fact:** Let A be a normed division algebra. Define

$$
\mathsf{Aut}(A) := \{ g \in \mathsf{GL}(A) \colon g(xy) = g(x)g(y), \ \forall x, y \in A \}.
$$

Then:

 $Aut(\mathbb{R}) = \{Id\}$ Aut $(\mathbb{C}) \cong \mathbb{Z}_2$ $Aut(\mathbb{H}) \cong SO(3)$ Aut(O) ∼= G²

One can take $G_2 = Aut(0)$ as the **definition** of G_2 .

∴ To understand G_2 , we need to understand \mathbb{O} .

- \bullet A is a finite-dim $\mathbb R$ -algebra (not necessarily associative) with unit 1;
- \bullet $\langle \cdot, \cdot \rangle$ is a positive-definite inner product whose norm $\| \cdot \|$ satisfies

 $||xy|| = ||x|| ||y||, \forall x, y \in A.$

- \bullet A is a finite-dim $\mathbb R$ -algebra (not necessarily associative) with unit 1;
- $\bullet \langle \cdot, \cdot \rangle$ is a positive-definite inner product whose norm $\|\cdot\|$ satisfies

$$
||xy|| = ||x|| ||y||, \quad \forall x, y \in A.
$$

Hurwitz Theorem: The only normed division algebras are:

 $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}.$

- A is a finite-dim R-algebra (not necessarily associative) with unit 1;
- \bullet $\langle \cdot, \cdot \rangle$ is a positive-definite inner product whose norm $\|\cdot\|$ satisfies

$$
||xy|| = ||x|| ||y||, \quad \forall x, y \in A.
$$

Hurwitz Theorem: The only normed division algebras are:

 $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}.$

(Note: Generalizing "normed division algebra" to allow $\langle \cdot, \cdot \rangle$ non-deg. (not just positive-definite), one gets three more algebras: $\widetilde{\mathbb{C}}$, $\widetilde{\mathbb{H}}$, $\widetilde{\mathbb{O}}$.)

- \bullet A is a finite-dim $\mathbb R$ -algebra (not necessarily associative) with unit 1;
- \bullet $\langle \cdot, \cdot \rangle$ is a positive-definite inner product whose norm $\|\cdot\|$ satisfies

$$
||xy|| = ||x|| ||y||, \quad \forall x, y \in A.
$$

Hurwitz Theorem: The only normed division algebras are:

 $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}.$

(Note: Generalizing "normed division algebra" to allow $\langle \cdot, \cdot \rangle$ non-deg. (not just positive-definite), one gets three more algebras: $\widetilde{\mathbb{C}}$. $\widetilde{\mathbb{H}}$, $\widetilde{\mathbb{O}}$.)

Def (unhelpful): The **octonions** \mathbb{O} are the normed division algebra that $isn't \mathbb{R}, \mathbb{C}, \mathbb{H}.$

The Octonions

Def $(8 = 4 + 4)$: The **octonions** $\mathbb{O} = \mathbb{H} \oplus \mathbb{H}$ are pairs of quaternions with multiplication law

$$
(a, b) \cdot (c, d) := (ac - \overline{d}b, da + b\overline{c}).
$$

The inner product $\langle\cdot,\cdot\rangle$ is the standard one on $\mathbb{R}^8=\mathbb{R}^4\oplus\mathbb{R}^4.$

The Octonions

Def $(8 = 4 + 4)$: The **octonions** $\mathbb{O} = \mathbb{H} \oplus \mathbb{H}$ are pairs of quaternions with multiplication law

$$
(a,b)\cdot (c,d):=(ac-\overline{d}b,da+b\overline{c}).
$$

The inner product $\langle\cdot,\cdot\rangle$ is the standard one on $\mathbb{R}^8=\mathbb{R}^4\oplus\mathbb{R}^4.$

Def $(8 = 1 + 7)$: The **octonions** $\mathbb{O} = \text{span}_{\mathbb{R}}(1, e_1, \dots, e_7)$ are objects of the form

$$
x = x_0 + x_1 e_1 + \dots + x_7 e_7
$$

with multiplication defined by the table:

Let $\mathsf{Re}(\mathbb{O}):=\mathsf{span}(1)\simeq\mathbb{R}$ and $\mathsf{Im}(\mathbb{O}):=\mathsf{span}(e_1,\ldots,e_7)\simeq\mathbb{R}^7$, so $\mathbb{O} = \mathsf{Re}(\mathbb{O}) \oplus \mathsf{Im}(\mathbb{O}) \simeq \mathbb{R} \oplus \mathbb{R}^7.$

Let
$$
\text{Re}(\mathbb{O}) := \text{span}(1) \simeq \mathbb{R}
$$
 and $\text{Im}(\mathbb{O}) := \text{span}(e_1, \dots, e_7) \simeq \mathbb{R}^7$, so

$$
\mathbb{O} = \text{Re}(\mathbb{O}) \oplus \text{Im}(\mathbb{O}) \simeq \mathbb{R} \oplus \mathbb{R}^7.
$$

Writing $x \in \mathbb{O}$ as $x = \text{Re}(x) + \text{Im}(x)$, define $\overline{x} := \text{Re}(x) - \text{Im}(x).$ Note: Re $(x) = \frac{1}{2}(x + \overline{x})$ and $\text{Im}(x) = \frac{1}{2}(x - \overline{x})$. Careful: $\overline{x}\overline{y} = \overline{y}\,\overline{x}.$

Let
$$
\text{Re}(\mathbb{O}) := \text{span}(1) \simeq \mathbb{R}
$$
 and $\text{Im}(\mathbb{O}) := \text{span}(e_1, \dots, e_7) \simeq \mathbb{R}^7$, so

$$
\mathbb{O} = \text{Re}(\mathbb{O}) \oplus \text{Im}(\mathbb{O}) \simeq \mathbb{R} \oplus \mathbb{R}^7.
$$

Writing
$$
x \in \mathbb{O}
$$
 as $x = \text{Re}(x) + \text{Im}(x)$, define
\n
$$
\overline{x} := \text{Re}(x) - \text{Im}(x).
$$
\nNote: $\text{Re}(x) = \frac{1}{2}(x + \overline{x})$ and $\text{Im}(x) = \frac{1}{2}(x - \overline{x})$. Careful:
\n
$$
\overline{xy} = \overline{y} \overline{x}.
$$

Identities: Let $x, y, z \in \mathbb{O}$. Then:

$$
\langle xz, yz \rangle = \langle x, y \rangle ||z||^2 = \langle zx, zy \rangle
$$

$$
\langle x, y \rangle = \text{Re}(\overline{xy}) = \text{Re}(\overline{xy}).
$$

and

$$
x \perp y \quad \Longrightarrow \quad x\overline{y} = -y\overline{x}.
$$

Let
$$
\text{Re}(\mathbb{O}) := \text{span}(1) \simeq \mathbb{R}
$$
 and $\text{Im}(\mathbb{O}) := \text{span}(e_1, \dots, e_7) \simeq \mathbb{R}^7$, so

$$
\mathbb{O} = \text{Re}(\mathbb{O}) \oplus \text{Im}(\mathbb{O}) \simeq \mathbb{R} \oplus \mathbb{R}^7.
$$

Writing
$$
x \in \mathbb{O}
$$
 as $x = \text{Re}(x) + \text{Im}(x)$, define
\n
$$
\overline{x} := \text{Re}(x) - \text{Im}(x).
$$
\nNote: $\text{Re}(x) = \frac{1}{2}(x + \overline{x})$ and $\text{Im}(x) = \frac{1}{2}(x - \overline{x})$. Careful:
\n
$$
\overline{xy} = \overline{y} \overline{x}.
$$

Identities: Let $x, y, z \in \mathbb{O}$. Then:

$$
\langle xz, yz \rangle = \langle x, y \rangle ||z||^2 = \langle zx, zy \rangle
$$

$$
\langle x, y \rangle = \text{Re}(\overline{xy}) = \text{Re}(\overline{xy}).
$$

and

$$
x \perp y \quad \Longrightarrow \quad x\overline{y} = -y\overline{x}.
$$

The octonions are not associative, but they are alternative:

$$
x(xy) = x2y \qquad \qquad (xy)y = xy2 \qquad \qquad (xy)x = x(yx).
$$

 $\textsf{Im}(\mathbb{O})\simeq \mathbb{R}^7$ carries special geometric structures:

• The vector cross product $\times: \Lambda^2(\mathbb{R}^7) \to \mathbb{R}^7$:

$$
x \times y := \frac{1}{2}(xy - yx) = -\text{Im}(yx).
$$

Facts: \times is alternating, satisfies $x \times y \perp x$, and $||x \times y|| = ||x \wedge y||$.

 $\textsf{Im}(\mathbb{O})\simeq \mathbb{R}^7$ carries special geometric structures:

• The vector cross product $\times: \Lambda^2(\mathbb{R}^7) \to \mathbb{R}^7$:

$$
x \times y := \frac{1}{2}(xy - yx) = -\mathrm{Im}(yx).
$$

Facts: \times is alternating, satisfies $x \times y \perp x$, and $||x \times y|| = ||x \wedge y||$.

• The associative 3-form $\phi_0 \in \Lambda^3(\mathbb{R}^7)$:

$$
\phi_0(x,y,z):=\langle x\times y,z\rangle.
$$

 $\textsf{Im}(\mathbb{O})\simeq \mathbb{R}^7$ carries special geometric structures:

• The vector cross product $\times: \Lambda^2(\mathbb{R}^7) \to \mathbb{R}^7$:

$$
x \times y := \frac{1}{2}(xy - yx) = -\mathrm{Im}(yx).
$$

Facts: \times is alternating, satisfies $x \times y \perp x$, and $||x \times y|| = ||x \wedge y||$.

• The associative 3-form $\phi_0 \in \Lambda^3(\mathbb{R}^7)$:

$$
\phi_0(x, y, z) := \langle x \times y, z \rangle.
$$

Let $\{1, e_1, e_2, \ldots, e_7\}$ the standard basis of $\mathbb{O} \simeq \mathbb{R}^8$. Then:

$$
\phi_0=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356}
$$
 where $e^{ijk}:=e^i\wedge e^j\wedge e^k.$

 $\textsf{Im}(\mathbb{O})\simeq \mathbb{R}^7$ carries special geometric structures:

• The vector cross product $\times: \Lambda^2(\mathbb{R}^7) \to \mathbb{R}^7$:

$$
x \times y := \tfrac{1}{2}(xy-yx) = -\mathrm{Im}(yx).
$$

Facts: \times is alternating, satisfies $x \times y \perp x$, and $||x \times y|| = ||x \wedge y||$.

• The associative 3-form $\phi_0 \in \Lambda^3(\mathbb{R}^7)$:

$$
\phi_0(x, y, z) := \langle x \times y, z \rangle.
$$

Let $\{1, e_1, e_2, \ldots, e_7\}$ the standard basis of $\mathbb{O} \simeq \mathbb{R}^8$. Then:

$$
\phi_0 = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}
$$

where $e^{ijk} := e^i \wedge e^j \wedge e^k$.

Analogy: In $\mathbb{C}^n = \mathbb{R}^{2n}$, the **Kähler** 2-form is $\omega(x, y) := \langle Jx, y \rangle$. The pair (J,ω) on \mathbb{R}^{2n} is analogous to (\times,ϕ_0) on $\mathbb{R}^7.$

Let $V=\mathbb{R}^7.$ For each 3-form $\gamma\in\Lambda^3(V^*),$ define a symmetric bilinear form

$$
B_{\gamma} \colon \mathrm{Sym}^{2}(V) \to \Lambda^{7}(V^{*})
$$

$$
B_{\gamma}(x, y) := \frac{1}{6} (\iota_{x} \gamma) \wedge (\iota_{y} \gamma) \wedge \gamma.
$$

Let $V=\mathbb{R}^7.$ For each 3-form $\gamma\in\Lambda^3(V^*),$ define a symmetric bilinear form

$$
B_{\gamma} \colon \mathrm{Sym}^{2}(V) \to \Lambda^{7}(V^{*})
$$

$$
B_{\gamma}(x, y) := \frac{1}{6} (\iota_{x} \gamma) \wedge (\iota_{y} \gamma) \wedge \gamma.
$$

Say $\gamma\in\Lambda^3(V^*)$ is **definite** if B_γ is definite. Let

$$
\Lambda^3_+(V^*):=\{\text{Definite 3-forms}\}\subset \Lambda^3(V^*).
$$

Let $V=\mathbb{R}^7.$ For each 3-form $\gamma\in\Lambda^3(V^*),$ define a symmetric bilinear form

$$
B_{\gamma} \colon \mathrm{Sym}^2(V) \to \Lambda^7(V^*)
$$

$$
B_{\gamma}(x, y) := \frac{1}{6} \left(\iota_x \gamma \right) \wedge \left(\iota_y \gamma \right) \wedge \gamma.
$$

Say $\gamma\in\Lambda^3(V^*)$ is **definite** if B_γ is definite. Let

$$
\Lambda^3_+(V^*):=\{\text{Definite 3-forms}\}\subset \Lambda^3(V^*).
$$

Upshot: If γ is definite, then

$$
\tfrac{1}{6}\left(\iota_x\gamma\right)\wedge\left(\iota_y\gamma\right)\wedge\gamma=g_\gamma(x,y)\,\mathrm{vol}_\gamma
$$

for some positive-definite inner product g_{γ} and orientation form vol_{γ} on $V=\mathbb{R}^7$.

Consider the usual $\mathsf{GL}_7(\mathbb{R})$ -action on $V=\mathbb{R}^7$. This gives a $\mathsf{GL}_{7}(\mathbb R)$ -action on $\Lambda^3(V^*)$ via change-of-coordinates (pullback):

 $\gamma \mapsto A^* \gamma$

$Im(\mathbb{O})$ and G_2

Consider the usual $\mathsf{GL}_7(\mathbb{R})$ -action on $V=\mathbb{R}^7$. This gives a $\mathsf{GL}_{7}(\mathbb R)$ -action on $\Lambda^3(V^*)$ via change-of-coordinates (pullback):

 $\gamma \mapsto A^* \gamma$

Fundamental Facts: Let $\phi_0 \in \Lambda^3(V^*)$ the associative 3-form. (a) The orbit of ϕ_0 is the set of definite 3-forms:

 ${A^*\phi_0 \colon A \in \mathsf{GL}_7(\mathbb{R})} = \Lambda^3_+(V^*).$

Consider the usual $\mathsf{GL}_7(\mathbb{R})$ -action on $V=\mathbb{R}^7$. This gives a $\mathsf{GL}_{7}(\mathbb R)$ -action on $\Lambda^3(V^*)$ via change-of-coordinates (pullback):

 $\gamma \mapsto A^* \gamma$

Fundamental Facts: Let $\phi_0 \in \Lambda^3(V^*)$ the associative 3-form. (a) The orbit of ϕ_0 is the set of definite 3-forms:

$$
\{A^*\phi_0\colon A\in \mathsf{GL}_7(\mathbb{R})\}=\Lambda^3_+(V^*).
$$

(b) (Bryant) The stabilizer of ϕ_0 is the Lie group G_2 :

$$
G_2 = \{A \in GL_7(\mathbb{R}) : A^* \phi_0 = \phi_0\}.
$$

 G_2 -geometers often regard this as a working **definition** of G_2 .

Consider the usual $\mathsf{GL}_7(\mathbb{R})$ -action on $V=\mathbb{R}^7$. This gives a $\mathsf{GL}_{7}(\mathbb R)$ -action on $\Lambda^3(V^*)$ via change-of-coordinates (pullback):

 $\gamma \mapsto A^* \gamma$

Fundamental Facts: Let $\phi_0 \in \Lambda^3(V^*)$ the associative 3-form. (a) The orbit of ϕ_0 is the set of definite 3-forms:

$$
\{A^*\phi_0\colon A\in \mathsf{GL}_7(\mathbb{R})\}=\Lambda^3_+(V^*).
$$

(b) (Bryant) The stabilizer of ϕ_0 is the Lie group G_2 :

$$
G_2 = \{A \in GL_7(\mathbb{R}) : A^* \phi_0 = \phi_0\}.
$$

 G_2 -geometers often regard this as a working **definition** of G_2 .

Corollary: Orbit $(\phi_0) = \Lambda^3_+(V^*)$ is an **open set** in $\Lambda^3(V^*) \simeq \mathbb{R}^{35}$.

Let M^7 smooth 7-manifold. A ${\mathsf G}_2$ -structure on M^7 is a definite 3-form $\varphi\in\Omega^3(M).$ In other words (TFAE):

Let M^7 smooth 7-manifold. A ${\mathsf G}_2$ -structure on M^7 is a definite 3-form $\varphi\in\Omega^3(M).$ In other words (TFAE):

(i) For each $x \in M$: $\varphi|_x$ is a definite 3-form.

i.e.: For each $x \in M$: The symmetric bilinear form

$$
B_{\varphi}(v, w)|_{x} := \frac{1}{6} \left(\iota_{v} \varphi \right) \wedge \left(\iota_{w} \varphi \right) \wedge \varphi \big|_{x}
$$

is definite.

Let M^7 smooth 7-manifold. A ${\mathsf G}_2$ -structure on M^7 is a definite 3-form $\varphi\in\Omega^3(M).$ In other words (TFAE):

(i) For each $x \in M$: $\varphi|_x$ is a definite 3-form.

i.e.: For each $x \in M$: The symmetric bilinear form

$$
B_{\varphi}(v, w)|_x := \frac{1}{6} \left(\iota_v \varphi \right) \wedge \left(\iota_w \varphi \right) \wedge \varphi \big|_x
$$

is definite.

(ii) For each $x \in M$: There exists an isomorphism $L: T_xM \to \mathbb{R}^7$ s.t. $\varphi|_x = L^*(\phi_0).$

Let M^7 smooth 7-manifold. A ${\mathsf G}_2$ -structure on M^7 is a definite 3-form $\varphi\in\Omega^3(M).$ In other words (TFAE):

(i) For each $x \in M$: $\varphi|_x$ is a definite 3-form.

i.e.: For each $x \in M$: The symmetric bilinear form

$$
B_{\varphi}(v, w)|_x := \frac{1}{6} \left(\iota_v \varphi \right) \wedge \left(\iota_w \varphi \right) \wedge \varphi \big|_x
$$

is definite.

(ii) For each $x \in M$: There exists an isomorphism $L: T_xM \to \mathbb{R}^7$ s.t. $\varphi|_x = L^*(\phi_0).$

i.e.: For each $x \in M$: There exists a frame (e_1, \ldots, e_7) at x s.t.

$$
\varphi|_{x} = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}
$$
G₂-Structures on 7-Manifolds

Let M^7 smooth 7-manifold. A ${\mathsf G}_2$ -structure on M^7 is a definite 3-form $\varphi\in\Omega^3(M).$ In other words (TFAE):

(i) For each $x \in M$: $\varphi|_x$ is a definite 3-form.

i.e.: For each $x \in M$: The symmetric bilinear form

$$
B_{\varphi}(v, w)|_x := \frac{1}{6} \left(\iota_v \varphi \right) \wedge \left(\iota_w \varphi \right) \wedge \varphi \big|_x
$$

is definite.

(ii) For each $x \in M$: There exists an isomorphism $L: T_xM \to \mathbb{R}^7$ s.t. $\varphi|_x = L^*(\phi_0).$

i.e.: For each $x \in M$: There exists a frame (e_1, \ldots, e_7) at x s.t.

$$
\varphi|_{x}=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356}
$$

Summary: A G₂-structure $\varphi \in \Omega^3(M)$ identifies

 $(T_xM, \varphi|_x) \simeq (\text{Im}(\mathbb{O}), \phi_0).$

G₂-Structures on 7-Manifolds

Fact: M^7 admits a G₂-structure $\iff M^7$ orientable and spin.

G₂-Structures on 7-Manifolds

Fact: M^7 admits a G₂-structure $\iff M^7$ orientable and spin.

 \bullet A G $_2$ -structure $\varphi\in\Omega^3(M)$ induces a canonical Riemannian metric g_φ and orientation vol $_{\varphi}$ via

$$
g_{\varphi}(v, w) \operatorname{vol}_{\varphi} = \frac{1}{6} \left(\iota_v \varphi \right) \wedge \left(\iota_w \varphi \right) \wedge \varphi
$$

$$
\operatorname{vol}_{\varphi} = \frac{1}{7} \varphi \wedge * \varphi
$$

• A G₂-structure yields a **vector cross product** $\times : TM \times TM \rightarrow TM$ via

$$
\varphi(x, y, z) = g_{\varphi}(x \times y, z).
$$

G_2 -Structures on 7-Manifolds

Fact: M^7 admits a G₂-structure $\iff M^7$ orientable and spin.

 \bullet A G $_2$ -structure $\varphi\in\Omega^3(M)$ induces a canonical Riemannian metric g_φ and orientation vol $_{\varphi}$ via

$$
g_{\varphi}(v, w) \operatorname{vol}_{\varphi} = \frac{1}{6} (i_{v} \varphi) \wedge (i_{w} \varphi) \wedge \varphi
$$

$$
\operatorname{vol}_{\varphi} = \frac{1}{7} \varphi \wedge * \varphi
$$

• A G₂-structure yields a **vector cross product** $\times: TM \times TM \rightarrow TM$ via

$$
\varphi(x, y, z) = g_{\varphi}(x \times y, z).
$$

Warnings:

• The map $\varphi \mapsto g_{\varphi}$ is not injective. Different G₂-structures may induce the same metric.

• The map $\varphi \mapsto g_{\varphi}$ is highly nonlinear.

• The Hodge star $*$ is determined by $(g_{\varphi}, \text{vol}_{\varphi})$, which depends nonlinearly on φ .

Let φ be a G₂-structure.

- φ closed if: $d\varphi = 0$.
- φ co-closed if: $d * \varphi = 0$.
- φ torsion-free if: $d\varphi = 0$ and $d * \varphi = 0$.

Let φ be a G₂-structure.

- φ closed if: $d\varphi = 0$.
- φ co-closed if: $d * \varphi = 0$.
- φ torsion-free if: $d\varphi = 0$ and $d * \varphi = 0$.

Def: A \mathbf{G}_2 -manifold (M^7,φ) is a 7-manifold with a torsion-free G_2 -structure $\varphi \in \Omega^3(M)$:

$$
d\varphi = 0 \qquad d * \varphi = 0.
$$

Example: (\mathbb{R}^7, ϕ_0) is a G₂-manifold. Note Hol $(g_0) = \{\mathsf{Id}\}.$

Let φ be a G₂-structure.

- φ closed if: $d\varphi = 0$.
- φ co-closed if: $d * \varphi = 0$.
- φ torsion-free if: $d\varphi = 0$ and $d * \varphi = 0$.

Def: A \mathbf{G}_2 -manifold (M^7,φ) is a 7-manifold with a torsion-free G_2 -structure $\varphi \in \Omega^3(M)$:

$$
d\varphi = 0 \qquad d * \varphi = 0.
$$

Example: (\mathbb{R}^7, ϕ_0) is a G₂-manifold. Note Hol $(g_0) = \{\mathsf{Id}\}.$

 $Q:$ How do G₂-manifolds relate to G₂-holonomy metrics?

Let φ be a G₂-structure.

- φ closed if: $d\varphi = 0$.
- φ co-closed if: $d * \varphi = 0$.
- φ torsion-free if: $d\varphi = 0$ and $d * \varphi = 0$.

Def: A \mathbf{G}_2 -manifold (M^7,φ) is a 7-manifold with a torsion-free G_2 -structure $\varphi \in \Omega^3(M)$:

$$
d\varphi = 0 \qquad d * \varphi = 0.
$$

Example: (\mathbb{R}^7, ϕ_0) is a G₂-manifold. Note Hol $(g_0) = \{\mathsf{Id}\}.$

 $Q:$ How do G₂-manifolds relate to G₂-holonomy metrics?

Fernández-Gray ('82): Let $M⁷$ orientable, spin. (a) Let $\varphi \in \Omega^3(M)$ be a G₂-structure.

$$
d\varphi = 0
$$
 and $d * \varphi = 0$ \implies Hol $(g_{\varphi}) \leq G_2$.

Let φ be a G₂-structure.

- φ closed if: $d\varphi = 0$.
- φ co-closed if: $d * \varphi = 0$.
- φ torsion-free if: $d\varphi = 0$ and $d * \varphi = 0$.

Def: A \mathbf{G}_2 -manifold (M^7,φ) is a 7-manifold with a torsion-free G_2 -structure $\varphi \in \Omega^3(M)$:

$$
d\varphi = 0 \qquad d * \varphi = 0.
$$

Example: (\mathbb{R}^7, ϕ_0) is a G₂-manifold. Note Hol $(g_0) = \{\mathsf{Id}\}.$

 $Q:$ How do G₂-manifolds relate to G₂-holonomy metrics?

Fernández-Gray ('82): Let M^7 orientable, spin. (a) Let $\varphi \in \Omega^3(M)$ be a G₂-structure. $d\varphi = 0$ and $d * \varphi = 0 \implies Hol(q_{\varphi}) < G_2$. (b) Let q be a metric on M . $\text{Hol}(g) \leq G_2 \implies g = g_\infty \exists G_2\text{-str. } \varphi \text{ with } d\varphi = 0 \text{ and } d * \varphi = 0.$ Fernández-Gray ('82): Let $M⁷$ orientable, spin. (a) Let $\varphi \in \Omega^3(M)$ be a G₂-structure.

$$
d\varphi=0\;\;\text{and}\;\;d\ast\varphi=0\;\;\implies\;\; \mathsf{Hol}(g_\varphi)\leq \mathsf{G}_2.
$$

(b) Let g be a metric on M .

 $\text{Hol}(g) \leq \textsf{G}_2 \implies g = g_\varphi \exists \textsf{G}_2\text{-str. } \varphi \text{ with } d\varphi = 0 \text{ and } d * \varphi = 0.$

Fernández-Gray ('82): Let M^7 orientable, spin. (a) Let $\varphi \in \Omega^3(M)$ be a G₂-structure.

$$
d\varphi=0\;\;\text{and}\;\;d\ast\varphi=0\;\;\implies\;\; \mathsf{Hol}(g_\varphi)\leq \mathsf{G}_2.
$$

(b) Let g be a metric on M .

 $\text{Hol}(g) \leq \textsf{G}_2 \implies g = g_{\varphi} \exists \textsf{G}_2\text{-str.} \varphi \text{ with } d\varphi = 0 \text{ and } d * \varphi = 0.$

Bonan ('66): Every G_2 -manifold is Ricci-flat.

Fernández-Gray ('82): Let $M⁷$ orientable, spin. (a) Let $\varphi \in \Omega^3(M)$ be a G₂-structure.

$$
d\varphi=0\;\;\text{and}\;\;d\ast\varphi=0\;\;\implies\;\; \mathsf{Hol}(g_\varphi)\leq \mathsf{G}_2.
$$

(b) Let q be a metric on M .

 $\text{Hol}(q) \leq G_2 \implies q = q_{\varphi} \exists G_2$ -str. φ with $d\varphi = 0$ and $d * \varphi = 0$.

Bonan ('66): Every G_2 -manifold is Ricci-flat.

Bryant Criterion ('87): Let (M^7, g) simply-connected, $Hol(g) \leq G_2$. Then:

 $Hol(q) = G_2 \iff$ There are no (non-zero) parallel 1-forms.

Fernández-Gray ('82): Let $M⁷$ orientable, spin. (a) Let $\varphi \in \Omega^3(M)$ be a G₂-structure.

$$
d\varphi=0\;\;\text{and}\;\;d\ast\varphi=0\;\;\implies\;\; \mathsf{Hol}(g_\varphi)\leq \mathsf{G}_2.
$$

(b) Let g be a metric on M .

 $\text{Hol}(q) \leq G_2 \implies q = q_{\varphi} \exists G_2$ -str. φ with $d\varphi = 0$ and $d * \varphi = 0$.

Bonan ('66): Every G_2 -manifold is Ricci-flat.

Bryant Criterion ('87): Let (M^7, g) simply-connected, $Hol(g) \leq G_2$. Then:

 $Hol(q) = G_2 \iff$ There are no (non-zero) parallel 1-forms.

Joyce Criterion ('96): Let (M^7,g) compact, $\mathsf{Hol}(g) \leq \mathsf{G}_2$. Then:

$$
\mathsf{Hol}(g) = \mathsf{G}_2 \iff \pi_1(M) \text{ finite.}
$$

G_2 Holonomy

Strategy: Let M^7 orientable, spin. To construct g with $Hol(g) = G_2$: 1. (Non-trivial) Construct torsion-free G_2 -structure φ . i.e.: Find G_2 -structure solving the nonlinear PDE system

$$
d\varphi = 0
$$

$$
d * \varphi = 0.
$$

Then Hol $(g_{\varphi}) \leq G_2$.

2. Apply Bryant's Criterion or Joyce's Criterion.

Strategy: Let M^7 orientable, spin. To construct g with $Hol(g) = G_2$: 1. (Non-trivial) Construct torsion-free G_2 -structure φ . i.e.: Find G_2 -structure solving the nonlinear PDE system

> $d\varphi=0$ $d * \varphi = 0.$

Then $Hol(q_\omega) < G_2$.

2. Apply Bryant's Criterion or Joyce's Criterion.

Remark: If M^7 compact, then there are topological obstructions to existence of G_2 -holonomy metrics. Necessary conditions are:

- $\pi_1(M)$ finite
- $b^3(M) \ge 1$ (where $b^3(M) = \dim(H^3(M; \mathbb{R}))$)
- $p_1(M) \neq 0$ (where $p_1(M) =$ first Pontryagin class).

Hard Open Problem: Let M^7 compact (orientable, spin). Find necessary and sufficient conditions for M^7 to admit ${\sf G}_2$ -holonomy metrics. **Strategy:** Let M^7 orientable, spin. To construct g with $Hol(g) = G_2$: 1. (Non-trivial) Construct torsion-free G_2 -structure φ . i.e.: Find G_2 -structure solving the nonlinear PDE system

> $d\varphi=0$ $d * \varphi = 0.$

Then $Hol(q_{\varphi}) < G_2$.

2. Apply Bryant's Criterion or Joyce's Criterion.

Constructing torsion-free G_2 -structures is not easy. Most (all?) examples use one of the following ideas:

Idea 1: $7 = 6 + 1$. (Build M^7 from Calabi-Yau X^6 or nearly-Kähler X^6) Idea 2: $7 = 4 + 3$.

Bryant ('87): On small balls in \mathbb{R}^7 : There exist G₂-holonomy metrics.

Bryant ('87): On small balls in \mathbb{R}^7 : There exist G₂-holonomy metrics. The generic metric depends on 6 arbitrary functions of 6 variables (in the sense of exterior differential systems) up to diffeomorphism.

Bryant ('87): On small balls in \mathbb{R}^7 : There exist G₂-holonomy metrics. The generic metric depends on 6 arbitrary functions of 6 variables (in the sense of exterior differential systems) up to diffeomorphism.

Bryant ('87): Constructed the first explicit example of Hol $(g) = G_2$.

Bryant ('87): On small balls in \mathbb{R}^7 : There exist G₂-holonomy metrics. The generic metric depends on 6 arbitrary functions of 6 variables (in the sense of exterior differential systems) up to diffeomorphism.

Bryant ('87): Constructed the first explicit example of Hol $(g) = G_2$. Consider $F^6 = {\mathsf{SU}}(3)/T^2$. Equip F with a certain homogeneous metric q_F (its homogeneous nearly-Kähler metric). Then

$$
M^7:=\operatorname{Cone}(F^6)=\mathbb{R}^+\times \frac{\operatorname{SU}(3)}{T^2}
$$

with cone metric

$$
g_M := dr^2 + r^2 g_F
$$

has $Hol(q_M) = G_2$.

Bryant-Salamon ('89): First examples of complete metrics with $Hol(g) = G_2$. They found **three** one-parameter families.

Bryant-Salamon ('89): First examples of complete metrics with $Hol(q) = G_2$. They found **three** one-parameter families.

As smooth manifolds: Their examples are total spaces of vector bundles:

$$
\pi\colon (M^7, g_M) \to (B, g_B).
$$

- \bullet $\Lambda_+^2(\mathbb{S}^4)$ is a rank 3 vector bundle over \mathbb{S}^4
- \bullet $\Lambda^2_+(\mathbb{CP}^2)$ is a rank 3 vector bundle over \mathbb{CP}^2
- \bullet $\mathcal{S}(\mathbb{S}^3)$ is a rank 4 vector bundle over \mathbb{S}^3

Bryant-Salamon ('89): First examples of complete metrics with $Hol(q) = G_2$. They found **three** one-parameter families.

As smooth manifolds: Their examples are total spaces of vector bundles:

$$
\pi\colon (M^7, g_M) \to (B, g_B).
$$

- \bullet $\Lambda_+^2(\mathbb{S}^4)$ is a rank 3 vector bundle over \mathbb{S}^4
- \bullet $\Lambda^2_+(\mathbb{CP}^2)$ is a rank 3 vector bundle over \mathbb{CP}^2
- \bullet $\mathcal{S}(\mathbb{S}^3)$ is a rank 4 vector bundle over \mathbb{S}^3

Geometrically:

• Bundle metrics: Metric has form

$$
g_M = f(r)^2 \alpha + g(r)^2 \pi^*(g_B)
$$

where $\alpha|_{\text{fiber}} =$ flat metric and $r =$ radius in fibers.

Bryant-Salamon ('89): First examples of complete metrics with $Hol(g) = G_2$. They found **three** one-parameter families.

As smooth manifolds: Their examples are total spaces of vector bundles:

$$
\pi\colon (M^7, g_M) \to (B, g_B).
$$

- \bullet $\Lambda_+^2(\mathbb{S}^4)$ is a rank 3 vector bundle over \mathbb{S}^4
- \bullet $\Lambda^2_+(\mathbb{CP}^2)$ is a rank 3 vector bundle over \mathbb{CP}^2
- \bullet $\mathcal{S}(\mathbb{S}^3)$ is a rank 4 vector bundle over \mathbb{S}^3

Geometrically:

• Bundle metrics: Metric has form

$$
g_M = f(r)^2 \alpha + g(r)^2 \pi^*(g_B)
$$

where $\alpha|_{\text{fiber}} = \text{flat metric}$ and $r = \text{radius in fibers.}$

• Symmetry: They are all cohomogeneity-one.

Bryant-Salamon ('89): First examples of complete metrics with $Hol(g) = G_2$. They found **three** one-parameter families.

As smooth manifolds: Their examples are total spaces of vector bundles:

$$
\pi\colon (M^7, g_M) \to (B, g_B).
$$

- \bullet $\Lambda_+^2(\mathbb{S}^4)$ is a rank 3 vector bundle over \mathbb{S}^4
- \bullet $\Lambda^2_+(\mathbb{CP}^2)$ is a rank 3 vector bundle over \mathbb{CP}^2
- \bullet $\mathcal{S}(\mathbb{S}^3)$ is a rank 4 vector bundle over \mathbb{S}^3

Geometrically:

• Bundle metrics: Metric has form

$$
g_M = f(r)^2 \alpha + g(r)^2 \pi^*(g_B)
$$

where $\alpha|_{\text{fiber}} = \text{flat metric}$ and $r = \text{radius in fibers.}$

- Symmetry: They are all cohomogeneity-one.
- At infinity: They are all asymptotic to G_2 -holonomy cones.

Compact Examples: Joyce's Theorem

Idea: Let (M^7,φ) compact with **closed** G₂-structure that is "almost" co-closed:

 $d\varphi = 0$ and $d * \varphi$ small.

Then maybe one could perturb $\varphi \rightsquigarrow \widetilde{\varphi}$ where $\widetilde{\varphi}$ is torsion-free.

Compact Examples: Joyce's Theorem

Idea: Let (M^7,φ) compact with **closed** G₂-structure that is "almost" co-closed:

 $d\varphi = 0$ and $d * \varphi$ small.

Then maybe one could perturb $\varphi \rightsquigarrow \widetilde{\varphi}$ where $\widetilde{\varphi}$ is torsion-free.

An almost G₂-structure (φ, ψ) is a closed G₂-structure φ and a 3-form ψ such that $d^*\varphi = d^*\psi$.

Compact Examples: Joyce's Theorem

Idea: Let (M^7,φ) compact with **closed** G₂-structure that is "almost" co-closed:

 $d\varphi = 0$ and $d * \varphi$ small.

Then maybe one could perturb $\varphi \rightsquigarrow \widetilde{\varphi}$ where $\widetilde{\varphi}$ is torsion-free.

An almost G₂-structure (φ, ψ) is a closed G₂-structure φ and a 3-form ψ such that $d^*\varphi = d^*\psi$.

Joyce's Perturbation Theorem ('96): Fix constants $A_1, A_2, A_3 > 0$. Then there exists an interval $(0, T]$ with $T > 0$ and a constant $K > 0$ such that:

If M^7 compact has a one-parameter family $(\varphi_t,\psi_t)_{t\in(0,T]}$ of almost G_2 -structures satisfying

(a) $\|\psi_t\|_{L^2}\leq A_1t^4$ and $\|\psi_t\|_{C^0}\leq A_1t^{1/2}$ and $\|d^*\psi_t\|_{L^{14}}\leq A_1$ (b) inj $(g_{\varphi_t})\ge A_2t$ (c) $\|R(g_{\varphi_t})\|_{C^0} \leq A_3 t^{-2}$

then M^7 admits **torsion-free** G₂-structures $\widetilde{\varphi}_t$ with

$$
\|\widetilde{\varphi}_t - \varphi_t\|_{C^0} \leq Kt^{1/2}.
$$

Compact Examples

Finding compact (M^7,φ) with $d\varphi=0$ and $d\ast\varphi$ small is very hard, but examples are known:

Compact Examples

Finding compact (M^7,φ) with $d\varphi=0$ and $d\ast\varphi$ small is very hard, but examples are known:

Compact 7-Manifolds with G_2 Holonomy:

• Joyce ('96): G_2 Kummer Construction

Compact 7-Manifolds with G_2 Holonomy:

- Joyce ('96): G_2 Kummer Construction
- Twisted Connected Sum Construction
	- Kovalev ('03)
	- Corti-Haskins-Nordstrom-Pacini ('12)

Compact 7-Manifolds with G_2 Holonomy:

- Joyce ('96): G_2 Kummer Construction
- Twisted Connected Sum Construction
	- Kovalev ('03)
	- Corti-Haskins-Nordstrom-Pacini ('12)
- Joyce-Karigiannis ('17)

Compact 7-Manifolds with G_2 Holonomy:

- Joyce ('96): G_2 Kummer Construction
- Twisted Connected Sum Construction
	- Kovalev ('03)
	- Corti-Haskins-Nordstrom-Pacini ('12)
- Joyce-Karigiannis ('17)

Open Questions:

 \bullet If M^7 compact admits closed G₂-structure, must it also admit a torsion-free G₂-structure?

Compact 7-Manifolds with G_2 Holonomy:

- Joyce ('96): G_2 Kummer Construction
- Twisted Connected Sum Construction
	- Kovalev ('03)
	- Corti-Haskins-Nordstrom-Pacini ('12)
- Joyce-Karigiannis ('17)

Open Questions:

 \bullet If M^7 compact admits closed G₂-structure, must it also admit a torsion-free G_2 -structure?

 \bullet Does \mathbb{S}^7 admit a closed G₂-structure?

Compact 7-Manifolds with G_2 Holonomy:

- Joyce ('96): G_2 Kummer Construction
- Twisted Connected Sum Construction
	- Kovalev ('03)
	- Corti-Haskins-Nordstrom-Pacini ('12)
- Joyce-Karigiannis ('17)

Open Questions:

 \bullet If M^7 compact admits closed G₂-structure, must it also admit a torsion-free G_2 -structure?

- \bullet Does \mathbb{S}^7 admit a closed G₂-structure?
- How can we distinguish G_2 -holonomy 7-manifolds?

Outline

- I. Holonomy
	- **o** Definition & Properties
	- **•** Berger's List
- II. G₂ Geometry
	- The Octonions
	- \bullet G₂-Structures on 7-Manifolds
	- \bullet G₂ Holonomy on 7-Manifolds
	- **•** Examples
- III. Special Submanifolds
	- **o** Calibrations
	- **Associative 3-folds**
	- **Coassociative 4-folds**