Lecture 1: G₂-Geometry and Associative 3-folds

Jesse Madnick National Center for Theoretical Sciences National Taiwan University

6th Geometry-Topology Summer School

Mon: Expository talk.

- Lecture 1 (Parts I, II): Holonomy & G₂-Geometry
- Tue: Expository talk.
 - Lecture 1 (Part III): Associatives & Coassociatives
 - Lecture 2: Nearly-Kähler Geometry & Holomorphic Curves

Wed: Research talk.

• Lecture 3: Closed Holomorphic Curves in \mathbb{S}^6

Fri: Research talk.

• Lecture 4: Free-Boundary Holomorphic Curves in NK 6-Mflds

Outline

- I. Holonomy
 - Definition & Properties
 - Berger's List

Outline

- I. Holonomy
 - Definition & Properties
 - Berger's List
- II. G_2 Geometry
 - The Octonions
 - $\bullet \ \ G_2 \text{-} Structures \ on \ \ 7 \text{-} Manifolds$
 - G_2 Holonomy on 7-Manifolds
 - Examples

Outline

- I. Holonomy
 - Definition & Properties
 - Berger's List
- II. G_2 Geometry
 - The Octonions
 - G₂-Structures on 7-Manifolds
 - G₂ Holonomy on 7-Manifolds
 - Examples
- III. Special Submanifolds
 - Calibrations
 - Associative 3-folds
 - Coassociative 4-folds

Let (M^n, g) connected Riemannian manifold. Let $\gamma: [0, 1] \to M$ loop at $x \in M$. Consider:

 $\begin{array}{l} P_\gamma\colon T_xM\to T_xM\\ P_\gamma(v)=\text{parallel translation of }v\text{ around }\gamma\end{array}$

Let (M^n, g) connected Riemannian manifold. Let $\gamma \colon [0, 1] \to M$ loop at $x \in M$. Consider:

 $\begin{array}{l} P_\gamma\colon T_xM\to T_xM\\ P_\gamma(v)=\text{parallel translation of }v\text{ around }\gamma\end{array}$

Holonomy group of (M,g) at $x \in M$:

$$\operatorname{Hol}(g)|_x = \{P_\gamma \in \operatorname{GL}(T_x M) \colon \gamma \text{ loop at } x\}.$$

Let (M^n, g) connected Riemannian manifold. Let $\gamma: [0, 1] \to M$ loop at $x \in M$. Consider:

$$P_{\gamma} \colon T_x M \to T_x M$$

 $P_{\gamma}(v) =$ parallel translation of v around γ

Holonomy group of (M,g) at $x \in M$:

$$\operatorname{Hol}(g)|_x = \{P_\gamma \in \operatorname{GL}(T_x M) \colon \gamma \text{ loop at } x\}.$$

Reduced holonomy group of (M,g) at $x \in M$:

 $\operatorname{Hol}^{0}(g)|_{\tau} = \{P_{\gamma} \in \operatorname{GL}(T_{x}M) : \gamma \text{ null-homotopic loop at } x\}.$

Let (M^n, g) connected Riemannian manifold. Let $\gamma: [0, 1] \to M$ loop at $x \in M$. Consider:

$$P_{\gamma} \colon T_x M \to T_x M$$

 $P_{\gamma}(v) =$ parallel translation of v around γ

Holonomy group of (M, g) at $x \in M$:

$$\operatorname{Hol}(g)|_x = \{P_\gamma \in \operatorname{GL}(T_xM) \colon \gamma \text{ loop at } x\}.$$

Reduced holonomy group of (M,g) at $x \in M$:

 $\operatorname{Hol}^{0}(g)|_{x} = \{P_{\gamma} \in \operatorname{GL}(T_{x}M) \colon \gamma \text{ null-homotopic loop at } x\}.$

Group structure is via loop concatenation (just like for $\pi_1(M, x)$):

$$P_{\alpha} \circ P_{\beta} = P_{\alpha\beta} \qquad (P_{\alpha})^{-1} = P_{\overline{\alpha}}$$

where $\overline{\alpha}$ is the reverse path of $\alpha.$

Holonomy: Properties

Parallel translation is an isometry. So:

 $\mathsf{Hol}(g)|_x \le \mathsf{O}(T_x M) \qquad \qquad \mathsf{Hol}^0(g)|_x \le \mathsf{SO}(T_x M).$

 $\operatorname{Hol}(g)|_x \leq \operatorname{O}(T_x M) \qquad \qquad \operatorname{Hol}^0(g)|_x \leq \operatorname{SO}(T_x M).$

Basepoint Independence. Let γ path from x to y. Then

$$\operatorname{Hol}(g)|_y = P_\gamma \circ \operatorname{Hol}(g)|_x \circ P_\gamma^{-1}$$

 \therefore Can speak of Hol(g) and Hol⁰(g) as groups defined up to conjugation.

 $\operatorname{Hol}(g)|_x \leq \operatorname{O}(T_x M)$ $\operatorname{Hol}^0(g)|_x \leq \operatorname{SO}(T_x M).$

Basepoint Independence. Let γ path from x to y. Then

$$\operatorname{Hol}(g)|_y = P_\gamma \circ \operatorname{Hol}(g)|_x \circ P_\gamma^{-1}$$

 \therefore Can speak of Hol(g) and Hol⁰(g) as groups defined up to conjugation.

Properties:

- $Hol^0(g)$ is connected.
- $\operatorname{Hol}^{0}(g) \leq \operatorname{Hol}(g)$. (*M* simply-connected \Longrightarrow $\operatorname{Hol}^{0}(g) = \operatorname{Hol}(g)$.)
- $\operatorname{Hol}^{0}(g)$ is the identity component of $\operatorname{Hol}(g)$.

 $\operatorname{Hol}(g)|_x \leq \operatorname{O}(T_x M)$ $\operatorname{Hol}^0(g)|_x \leq \operatorname{SO}(T_x M).$

Basepoint Independence. Let γ path from x to y. Then

$$\operatorname{Hol}(g)|_y = P_\gamma \circ \operatorname{Hol}(g)|_x \circ P_\gamma^{-1}$$

 \therefore Can speak of Hol(g) and Hol⁰(g) as groups defined up to conjugation.

Properties:

- $\operatorname{Hol}^{0}(g)$ is connected.
- $\operatorname{Hol}^{0}(g) \leq \operatorname{Hol}(g)$. (*M* simply-connected \Longrightarrow $\operatorname{Hol}^{0}(g) = \operatorname{Hol}(g)$.)
- $\operatorname{Hol}^{0}(g)$ is the identity component of $\operatorname{Hol}(g)$.
- (Borel-Lichnerowicz) $Hol^{0}(g)$ is a closed Lie subgroup of SO(n).

 $\operatorname{Hol}(g)|_x \leq \operatorname{O}(T_x M) \qquad \qquad \operatorname{Hol}^0(g)|_x \leq \operatorname{SO}(T_x M).$

Basepoint Independence. Let γ path from x to y. Then

$$\operatorname{Hol}(g)|_y = P_\gamma \circ \operatorname{Hol}(g)|_x \circ P_\gamma^{-1}$$

 \therefore Can speak of $\operatorname{Hol}(g)$ and $\operatorname{Hol}^0(g)$ as groups defined up to conjugation.

Properties:

- $\operatorname{Hol}^{0}(g)$ is connected.
- $\operatorname{Hol}^{0}(g) \leq \operatorname{Hol}(g)$. (*M* simply-connected \Longrightarrow $\operatorname{Hol}^{0}(g) = \operatorname{Hol}(g)$.)
- $\operatorname{Hol}^{0}(g)$ is the identity component of $\operatorname{Hol}(g)$.
- (Borel-Lichnerowicz) $Hol^{0}(g)$ is a closed Lie subgroup of SO(n).

 \therefore Hol⁰(g) is a compact connected Lie group.

Holonomy Algebra; Holonomy Representation

 $\mathrm{Hol}^0(g)|_x \leq \mathrm{SO}(T_x M)$ is a compact connected Lie group. Call its Lie algebra

$$\mathfrak{hol}(g)|_x \subset \mathfrak{so}(T_x M) \cong \Lambda^2(T_x^* M)$$

the holonomy algebra of (M, g).

 $\mathrm{Hol}^0(g)|_x \leq \mathrm{SO}(T_x M)$ is a compact connected Lie group. Call its Lie algebra

$$\mathfrak{hol}(g)|_x \subset \mathfrak{so}(T_x M) \cong \Lambda^2(T_x^* M)$$

the holonomy algebra of (M, g).

Remark: $\operatorname{Hol}^{0}(g)|_{x}$ is not just an abstract group: It comes with an embedding into $\operatorname{SO}(T_{x}M)$ (i.e.: There is an obvious action on $T_{x}M$).

 \therefore Can think of $\operatorname{Hol}^0(g) \leq \operatorname{SO}(n)$ as a representation.

 $\mathrm{Hol}^0(g)|_x \leq \mathrm{SO}(T_x M)$ is a compact connected Lie group. Call its Lie algebra

$$\mathfrak{hol}(g)|_x \subset \mathfrak{so}(T_x M) \cong \Lambda^2(T_x^* M)$$

the holonomy algebra of (M, g).

Remark: $\operatorname{Hol}^{0}(g)|_{x}$ is not just an abstract group: It comes with an embedding into $\operatorname{SO}(T_{x}M)$ (i.e.: There is an obvious action on $T_{x}M$).

 \therefore Can think of $\operatorname{Hol}^0(g) \leq \operatorname{SO}(n)$ as a representation.

Question: Why is the holonomy of (M, g) important?

 $\mathrm{Hol}^0(g)|_x \leq \mathrm{SO}(T_x M)$ is a compact connected Lie group. Call its Lie algebra

$$\mathfrak{hol}(g)|_x \subset \mathfrak{so}(T_x M) \cong \Lambda^2(T_x^* M)$$

the holonomy algebra of (M, g).

Remark: $\operatorname{Hol}^{0}(g)|_{x}$ is not just an abstract group: It comes with an embedding into $\operatorname{SO}(T_{x}M)$ (i.e.: There is an obvious action on $T_{x}M$).

 \therefore Can think of $\operatorname{Hol}^0(g) \leq \operatorname{SO}(n)$ as a **representation**.

Question: Why is the holonomy of (M,g) important? Answer: Holonomy is intimately related to:

- Curvature
- Parallel tensor fields
- Extra geometric structure (compatible with g)

Holonomy & Curvature

Let $T = T_x M$. The Riemann curvature tensor $\operatorname{Rm}(g) \in (T^*)^{\otimes 4}$ at $x \in M$ has various symmetries (e.g.: $R_{ijk\ell} = -R_{jik\ell} = -R_{ij\ell k}$):

 $\mathsf{Rm}(g)|_x \in \mathsf{Sym}^2(\Lambda^2(T^*)) \subset (T^*)^{\otimes 4}$

Holonomy & Curvature

Let $T = T_x M$. The Riemann curvature tensor $\operatorname{Rm}(g) \in (T^*)^{\otimes 4}$ at $x \in M$ has various symmetries (e.g.: $R_{ijk\ell} = -R_{jik\ell} = -R_{ij\ell k}$):

$$\mathsf{Rm}(g)|_x \in \mathsf{Sym}^2(\Lambda^2(T^*)) \subset (T^*)^{\otimes 4}$$

Fact: The holonomy algebra constrains the curvature:

$$\operatorname{Rm}(g)|_x \in \operatorname{Sym}^2(\mathfrak{hol}(g)|_x) \subset \operatorname{Sym}^2(\Lambda^2(T^*)).$$

Holonomy & Curvature

Let $T = T_x M$. The Riemann curvature tensor $\operatorname{Rm}(g) \in (T^*)^{\otimes 4}$ at $x \in M$ has various symmetries (e.g.: $R_{ijk\ell} = -R_{jik\ell} = -R_{ij\ell k}$):

$$\mathsf{Rm}(g)|_x \in \mathsf{Sym}^2(\Lambda^2(T^*)) \subset (T^*)^{\otimes 4}$$

Fact: The holonomy algebra constrains the curvature:

$$\operatorname{Rm}(g)|_x \in \operatorname{Sym}^2(\mathfrak{hol}(g)|_x) \subset \operatorname{Sym}^2(\Lambda^2(T^*)).$$

Ambrose-Singer Theorem ('53): The holonomy algebra is generated by the curvature:

The holonomy algebra $\mathfrak{hol}(g)|_x\subset\mathfrak{so}(T_xM)$ is the subspace spanned by

$$\{P_{\gamma}^{-1} \circ R(X,Y)|_{y} \circ P_{\gamma} \mid \gamma \text{ path from } x \text{ to } y, \ X,Y \in T_{y}M \}$$

where $R(X,Y)|_y \in \mathfrak{so}(T_yM)$ is the Riemann curvature endomorphism.

The holonomy representation determines which tensor fields S are parallel (i.e.: $\nabla S = 0$):

Holonomy Principle: Let $x \in M$.

(a) If S parallel tensor field, then $S|_x$ fixed by the $\mathrm{Hol}(g)|_x\text{-action on }T_xM.$

(b) If S_0 fixed by the Hol $(g)|_x$ -action on T_xM , then there is a unique parallel tensor field S with $S|_x = S_0$.

Theorem: Let $G \leq O(n)$. The following are equivalent: (i) $Hol(g) \leq G$. (ii) There exists a *G*-structure on *M* that is *g*-compatible and

torsion-free.

We won't define the terms "G-structure" or "g-compatible" or "torsion-free" here.

Theorem: Let $G \leq O(n)$. The following are equivalent: (i) $Hol(g) \leq G$. (ii) There exists a *G*-structure on *M* that is *g*-compatible and torsion-free.

We won't define the terms "G-structure" or "g-compatible" or "torsion-free" here.

Example: Let (M^n, g) have *n* even. Consider $G = U(\frac{n}{2}) \leq O(n)$.

Theorem: Let $G \leq O(n)$. The following are equivalent: (i) $Hol(g) \leq G$. (ii) There exists a *G*-structure on *M* that is *g*-compatible and

torsion-free.

We won't define the terms "G-structure" or "g-compatible" or "torsion-free" here.

Example: Let (M^n, g) have n even. Consider $G = U(\frac{n}{2}) \le O(n)$. A "torsion-free $U(\frac{n}{2})$ -structure" is just a "Kähler structure": A pair (g, J), where J is a g-parallel, g-orthogonal complex structure.

Theorem: Let $G \leq O(n)$. The following are equivalent: (i) $Hol(g) \leq G$. (ii) There exists a *G*-structure on *M* that is *g*-compatible and tension form

torsion-free.

We won't define the terms "G-structure" or "g-compatible" or "torsion-free" here.

Example: Let (M^n, g) have n even. Consider $G = U(\frac{n}{2}) \leq O(n)$. A "torsion-free $U(\frac{n}{2})$ -structure" is just a "Kähler structure": A pair (g, J), where J is a g-parallel, g-orthogonal complex structure. Therefore:

$$\mathsf{Hol}(g) \leq \mathsf{U}(\tfrac{n}{2}) \quad \Longleftrightarrow \quad g \text{ is a K\"ahler metric.}$$

Holonomy: Classification (Products)

Products: If $g \cong g_1 \times g_2$, then $Hol(g) = Hol(g_1) \times Hol(g_2)$.

Holonomy: Classification (Products)

Products: If $g \cong g_1 \times g_2$, then $Hol(g) = Hol(g_1) \times Hol(g_2)$.

Def: Let (M, g) Riemannian. Say:

• g globally reducible if: $g \cong g_1 \times g_2$.

 $\bullet \ g$ locally reducible if: Every point in M has globally reducible neighborhood.

• g irreducible if: g is not locally reducible.

Products: If $g \cong g_1 \times g_2$, then $Hol(g) = Hol(g_1) \times Hol(g_2)$.

Def: Let (M, g) Riemannian. Say:

• g globally reducible if: $g \cong g_1 \times g_2$.

 $\bullet \ g$ locally reducible if: Every point in M has globally reducible neighborhood.

• g irreducible if: g is not locally reducible.

 $\therefore g$ globally reducible \implies Hol(g) is a product of holonomy groups & The Hol(g)-representation is reducible. Conversely:

Products: If $g \cong g_1 \times g_2$, then $Hol(g) = Hol(g_1) \times Hol(g_2)$.

Def: Let (M, g) Riemannian. Say:

• g globally reducible if: $g \cong g_1 \times g_2$.

 $\bullet \ g$ locally reducible if: Every point in M has globally reducible neighborhood.

• g irreducible if: g is not locally reducible.

 $\therefore g$ globally reducible \implies Hol(g) is a product of holonomy groups & The Hol(g)-representation is reducible. Conversely:

de Rham Decomposition: Suppose $Hol(g)|_x$ -representation is reducible at some $x \in M$. Then:

• (Local) $\operatorname{Hol}^{0}(g)$ is a product group and g locally reducible.

• (Global) If also (M,g) is complete and simply connected, then Hol(g) is a product of holonomy groups and g globally reducible.

Say (M,g) is locally symmetric if:

 $\nabla R = 0.$

Equiv: (M,g) is locally isometric to a simply-connected Riemannian symmetric space.

Say (M,g) is locally symmetric if:

 $\nabla R = 0.$

Equiv: $\left(M,g\right)$ is locally isometric to a simply-connected Riemannian symmetric space.

É. Cartan (1927): Classified simply-connected Riemannian symmetric spaces.

Say (M,g) is locally symmetric if:

 $\nabla R = 0.$

Equiv: $\left(M,g\right)$ is locally isometric to a simply-connected Riemannian symmetric space.

É. Cartan (1927): Classified simply-connected Riemannian symmetric spaces.

... Holonomy groups of locally symmetric spaces are classified.

Say (M,g) is locally symmetric if:

 $\nabla R = 0.$

Equiv: $\left(M,g\right)$ is locally isometric to a simply-connected Riemannian symmetric space.

É. Cartan (1927): Classified simply-connected Riemannian symmetric spaces.

... Holonomy groups of locally symmetric spaces are classified.

Summary: If g locally reducible, or g locally symmetric, then we understand $Hol^{0}(g)$.

What about the other cases (g not locally reducible and g not locally symmetric)?

Berger's List ('55): Let (M^n, g) simply-connected. Assume g not locally reducible, not locally symmetric. Then Hol(g) is one of:

Berger's List ('55): Let (M^n, g) simply-connected. Assume g not locally reducible, not locally symmetric. Then Hol(g) is one of:

Hol(g)	dim	Name	Curvature
SO(n)			
$U(\frac{n}{2})$	n = 2m		
$SU(\frac{n}{2})$	n = 2m		
$Sp(\frac{n}{4})$	n = 4m		
$Sp(\frac{n}{4})Sp(1)$	n = 4m		
G_2	n = 7		
Spin(7)	n = 8		
Spin(9)	n = 16		
Hol(g)	dim	Name	Curvature
------------------------	--------	------	-----------
SO(n)			
$U(\frac{n}{2})$	n = 2m		
$SU(\frac{n}{2})$	n = 2m		
$Sp(\frac{n}{4})$	n = 4m		
$Sp(\frac{n}{4})Sp(1)$	n = 4m		
G_2	n = 7		
Spin(7)	n = 8		
Spin(9)	n = 16		

Alekseevsky ('68), Brown-Gray ('72): $Hol = Spin(9) \implies Symmetric$

Hol(g)	dim	Name	Curvature
SO(n)			
$U(\frac{n}{2})$	n = 2m		
$SU(\frac{n}{2})$	n = 2m		
$Sp(\frac{n}{4})$	n = 4m		
$Sp(\frac{\hat{n}}{4})Sp(1)$	n = 4m		
G_2	n = 7		
Spin(7)	n = 8		

Hol(g)	dim	Name	Curvature	
SO(n)				
$U(\frac{n}{2})$	n = 2m	Kähler		
$SU(\frac{n}{2})$	n = 2m	Calabi-Yau		
$Sp(\frac{\overline{n}}{4})$	n = 4m	Hyperkähler		
$Sp(\frac{n}{4})Sp(1)$	n = 4m	Quat. Kähler		
G_2	n = 7			
Spin(7)	n = 8			

Hol(g)	dim	Name	Curvature	
SO(n)				
$U(\frac{n}{2})$	n = 2m	Kähler		
$SU(\frac{n}{2})$	n = 2m	Calabi-Yau	Ricci-flat	
$Sp(\frac{\overline{n}}{4})$	n = 4m	Hyperkähler	Ricci-flat	
$Sp(\frac{\hat{n}}{4})Sp(1)$	n = 4m	Quat. Kähler	Einstein	
G_2	n = 7		Ricci-flat	
Spin(7)	n = 8		Ricci-flat	

Hol(g)	dim	Name	Curvature	
SO(n)				
$U(\frac{n}{2})$	n = 2m	Kähler		
$SU(\frac{n}{2})$	n = 2m	Calabi-Yau	Ricci-flat	
$Sp(\frac{\overline{n}}{4})$	n = 4m	Hyperkähler	Ricci-flat	
$Sp(\frac{n}{4})Sp(1)$	n = 4m	Quat. Kähler	Einstein	
G_2	n = 7		Ricci-flat	
Spin(7)	n = 8		Ricci-flat	

Open: Are there compact, Ricci-flat (M^n, g) with Hol(g) = SO(n)?

Hol(g)	dim	Name	Curvature	
SO(n)				
$U(\frac{n}{2})$	n = 2m	Kähler		
$SU(\frac{n}{2})$	n = 2m	Calabi-Yau	Ricci-flat	
$Sp(\frac{\overline{n}}{4})$	n = 4m	Hyperkähler	Ricci-flat	
$Sp(\frac{\hat{n}}{4})Sp(1)$	n = 4m	Quat. Kähler	Einstein	
G_2	n = 7		Ricci-flat	
Spin(7)	n = 8		Ricci-flat	

Open: Are there compact, Ricci-flat (M^n, g) with Hol(g) = SO(n)? **Open:** Are there compact, Ricci-flat, irreducible (M^5, g) ?

Hol(g)	dim	Name	Curvature	
SO(n)				
$U(\frac{n}{2})$	n = 2m	Kähler		
$SU(\frac{n}{2})$	n = 2m	Calabi-Yau	Ricci-flat	
$Sp(\frac{n}{4})$	n = 4m	Hyperkähler	Ricci-flat	
$Sp(\frac{n}{4})Sp(1)$	n = 4m	Quat. Kähler	Einstein	
G_2	n = 7		Ricci-flat	
Spin(7)	n = 8		Ricci-flat	

Outline

- I. Holonomy
 - Definition & Properties
 - Berger's List
- II. G_2 Geometry
 - The Octonions
 - G₂-Structures on 7-Manifolds
 - G_2 Holonomy on 7-Manifolds
 - Examples
- III. Special Submanifolds
 - Calibrations
 - Associative 3-folds
 - Coassociative 4-folds

The Lie group G_2 is intimately related to the octonions $\mathbb{O} \simeq \mathbb{R}^8$.

The Lie group G_2 is intimately related to the octonions $\mathbb{O} \simeq \mathbb{R}^8$. **Fact:** Let A be a normed division algebra. Define

$$\operatorname{Aut}(A) := \{g \in \operatorname{GL}(A) \colon g(xy) = g(x)g(y), \ \forall x, y \in A\}.$$

Then:

$$\begin{aligned} \mathsf{Aut}(\mathbb{R}) &= \{\mathsf{Id}\}\\ \mathsf{Aut}(\mathbb{C}) &\cong \mathbb{Z}_2\\ \mathsf{Aut}(\mathbb{H}) &\cong \mathsf{SO}(3)\\ \mathsf{Aut}(\mathbb{O}) &\cong \mathsf{G}_2 \end{aligned}$$

One can take $G_2 = Aut(\mathbb{O})$ as the **definition** of G_2 .

The Lie group G_2 is intimately related to the octonions $\mathbb{O} \simeq \mathbb{R}^8$. Fact: Let A be a normed division algebra. Define

$$\operatorname{Aut}(A) := \{g \in \operatorname{GL}(A) \colon g(xy) = g(x)g(y), \ \forall x, y \in A\}.$$

Then:

$$\begin{aligned} \mathsf{Aut}(\mathbb{R}) &= \{\mathsf{Id}\}\\ \mathsf{Aut}(\mathbb{C}) &\cong \mathbb{Z}_2\\ \mathsf{Aut}(\mathbb{H}) &\cong \mathsf{SO}(3)\\ \mathsf{Aut}(\mathbb{O}) &\cong \mathsf{G}_2 \end{aligned}$$

One can take $G_2 = Aut(\mathbb{O})$ as the **definition** of G_2 .

 \therefore To understand G₂, we need to understand \mathbb{O} .

- A is a finite-dim \mathbb{R} -algebra (not necessarily associative) with unit 1;
- $\langle\cdot,\cdot\rangle$ is a positive-definite inner product whose norm $\|\cdot\|$ satisfies

 $||xy|| = ||x|| ||y||, \quad \forall x, y \in A.$

- A is a finite-dim \mathbb{R} -algebra (not necessarily associative) with unit 1;
- $\langle\cdot,\cdot\rangle$ is a positive-definite inner product whose norm $\|\cdot\|$ satisfies

$$||xy|| = ||x|| ||y||, \quad \forall x, y \in A.$$

Hurwitz Theorem: The only normed division algebras are:

 $\mathbb{R},\mathbb{C},\mathbb{H},\mathbb{O}.$

- A is a finite-dim \mathbb{R} -algebra (not necessarily associative) with unit 1;
- $\langle\cdot,\cdot\rangle$ is a positive-definite inner product whose norm $\|\cdot\|$ satisfies

$$||xy|| = ||x|| ||y||, \quad \forall x, y \in A.$$

Hurwitz Theorem: The only normed division algebras are:

 $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}.$

(Note: Generalizing "normed division algebra" to allow $\langle \cdot, \cdot \rangle$ non-deg. (not just positive-definite), one gets three more algebras: $\widetilde{\mathbb{C}}$, $\widetilde{\mathbb{H}}$, $\widetilde{\mathbb{O}}$.)

- A is a finite-dim \mathbb{R} -algebra (not necessarily associative) with unit 1;
- $\langle\cdot,\cdot\rangle$ is a positive-definite inner product whose norm $\|\cdot\|$ satisfies

$$||xy|| = ||x|| ||y||, \quad \forall x, y \in A.$$

Hurwitz Theorem: The only normed division algebras are:

 $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}.$

(Note: Generalizing "normed division algebra" to allow $\langle \cdot, \cdot \rangle$ non-deg. (not just positive-definite), one gets three more algebras: $\widetilde{\mathbb{C}}$, $\widetilde{\mathbb{H}}$, $\widetilde{\mathbb{O}}$.)

Def (unhelpful): The octonions $\mathbb O$ are the normed division algebra that isn't $\mathbb R,\mathbb C,\mathbb H.$

The Octonions

Def (8 = 4 + 4): The octonions $\mathbb{O} = \mathbb{H} \oplus \mathbb{H}$ are pairs of quaternions with multiplication law

$$(a,b) \cdot (c,d) := (ac - \overline{d}b, da + b\overline{c}).$$

The inner product $\langle \cdot, \cdot \rangle$ is the standard one on $\mathbb{R}^8 = \mathbb{R}^4 \oplus \mathbb{R}^4$.

The Octonions

Def (8 = 4 + 4): The octonions $\mathbb{O} = \mathbb{H} \oplus \mathbb{H}$ are pairs of quaternions with multiplication law

$$(a,b) \cdot (c,d) := (ac - \overline{d}b, da + b\overline{c}).$$

The inner product $\langle\cdot,\cdot\rangle$ is the standard one on $\mathbb{R}^8=\mathbb{R}^4\oplus\mathbb{R}^4.$

Def (8 = 1 + 7): The octonions $\mathbb{O} = \text{span}_{\mathbb{R}}(1, e_1, \dots, e_7)$ are objects of the form

$$x = x_0 + x_1 e_1 + \dots + x_7 e_7$$

with multiplication defined by the table:

	e_1	e_2	e_3	e_4	e_5	e_6	e_7
e_1	-1	e_3	$-e_2$	e_5	$-e_4$	e_7	$-e_6$
e_2	$-e_3$	-1	e_1	e_6	$-e_{7}$	$-e_4$	e_5
e_3	e_2	$-e_1$	-1	$-e_{7}$	$-e_6$	e_5	e_4
e_4	$-e_5$	$-e_6$	e_7	-1	e_1	e_2	$-e_3$
e_5	e_4	e_7	e_6	$-e_1$	-1	$-e_3$	$-e_2$
e_6	$-e_{7}$	e_4	$-e_5$	$-e_2$	e_3	-1	e_1
e_7	e_6	$-e_5$	$-e_4$	e_3	e_2	$-e_1$	-1

Let $\operatorname{Re}(\mathbb{O}) := \operatorname{span}(1) \simeq \mathbb{R}$ and $\operatorname{Im}(\mathbb{O}) := \operatorname{span}(e_1, \ldots, e_7) \simeq \mathbb{R}^7$, so $\mathbb{O} = \operatorname{Re}(\mathbb{O}) \oplus \operatorname{Im}(\mathbb{O}) \simeq \mathbb{R} \oplus \mathbb{R}^7$.

Let
$$\operatorname{Re}(\mathbb{O}) := \operatorname{span}(1) \simeq \mathbb{R}$$
 and $\operatorname{Im}(\mathbb{O}) := \operatorname{span}(e_1, \dots, e_7) \simeq \mathbb{R}^7$, so
 $\mathbb{O} = \operatorname{Re}(\mathbb{O}) \oplus \operatorname{Im}(\mathbb{O}) \simeq \mathbb{R} \oplus \mathbb{R}^7$.

Writing $x \in \mathbb{O}$ as $x = \operatorname{Re}(x) + \operatorname{Im}(x)$, define $\overline{x} := \operatorname{Re}(x) - \operatorname{Im}(x)$. Note: $\operatorname{Re}(x) = \frac{1}{2}(x + \overline{x})$ and $\operatorname{Im}(x) = \frac{1}{2}(x - \overline{x})$. Careful: $\overline{xy} = \overline{y} \, \overline{x}$.

Let
$$\operatorname{Re}(\mathbb{O}) := \operatorname{span}(1) \simeq \mathbb{R}$$
 and $\operatorname{Im}(\mathbb{O}) := \operatorname{span}(e_1, \dots, e_7) \simeq \mathbb{R}^7$, so
 $\mathbb{O} = \operatorname{Re}(\mathbb{O}) \oplus \operatorname{Im}(\mathbb{O}) \simeq \mathbb{R} \oplus \mathbb{R}^7$.

Writing $x \in \mathbb{O}$ as $x = \operatorname{Re}(x) + \operatorname{Im}(x)$, define $\overline{x} := \operatorname{Re}(x) - \operatorname{Im}(x)$. Note: $\operatorname{Re}(x) = \frac{1}{2}(x + \overline{x})$ and $\operatorname{Im}(x) = \frac{1}{2}(x - \overline{x})$. Careful: $\overline{xy} = \overline{y} \, \overline{x}$.

Identities: Let $x, y, z \in \mathbb{O}$. Then:

$$\begin{split} \langle xz, yz \rangle &= \langle x, y \rangle \|z\|^2 = \langle zx, zy \rangle \\ \langle x, y \rangle &= \mathsf{Re}(x\overline{y}) = \mathsf{Re}(\overline{x}y). \end{split}$$

and

$$x \perp y \implies x\overline{y} = -y\overline{x}.$$

Let
$$\operatorname{Re}(\mathbb{O}) := \operatorname{span}(1) \simeq \mathbb{R}$$
 and $\operatorname{Im}(\mathbb{O}) := \operatorname{span}(e_1, \dots, e_7) \simeq \mathbb{R}^7$, so
 $\mathbb{O} = \operatorname{Re}(\mathbb{O}) \oplus \operatorname{Im}(\mathbb{O}) \simeq \mathbb{R} \oplus \mathbb{R}^7$.

Writing $x \in \mathbb{O}$ as $x = \operatorname{Re}(x) + \operatorname{Im}(x)$, define $\overline{x} := \operatorname{Re}(x) - \operatorname{Im}(x)$. Note: $\operatorname{Re}(x) = \frac{1}{2}(x + \overline{x})$ and $\operatorname{Im}(x) = \frac{1}{2}(x - \overline{x})$. Careful: $\overline{xy} = \overline{y} \, \overline{x}$.

Identities: Let $x, y, z \in \mathbb{O}$. Then:

$$\begin{split} \langle xz, yz \rangle &= \langle x, y \rangle \|z\|^2 = \langle zx, zy \rangle \\ \langle x, y \rangle &= \mathsf{Re}(x\overline{y}) = \mathsf{Re}(\overline{x}y). \end{split}$$

and

$$x \perp y \implies x\overline{y} = -y\overline{x}.$$

The octonions are **not** associative, but they are **alternative**:

$$x(xy) = x^2 y \qquad (xy)y = xy^2 \qquad (xy)x = x(yx).$$

 $\mathsf{Im}(\mathbb{O})\simeq\mathbb{R}^7$ carries special geometric structures:

• The vector cross product $\times : \Lambda^2(\mathbb{R}^7) \to \mathbb{R}^7$:

$$x \times y := \frac{1}{2}(xy - yx) = -\operatorname{Im}(yx).$$

Facts: \times is alternating, satisfies $x \times y \perp x$, and $||x \times y|| = ||x \wedge y||$.

 $\mathsf{Im}(\mathbb{O})\simeq\mathbb{R}^7$ carries special geometric structures:

• The vector cross product $\times : \Lambda^2(\mathbb{R}^7) \to \mathbb{R}^7$:

$$x\times y:=\tfrac{1}{2}(xy-yx)=-\mathsf{Im}(yx).$$

Facts: \times is alternating, satisfies $x \times y \perp x$, and $||x \times y|| = ||x \wedge y||$.

• The associative 3-form $\phi_0 \in \Lambda^3(\mathbb{R}^7)$:

$$\phi_0(x, y, z) := \langle x \times y, z \rangle.$$

 $\mathsf{Im}(\mathbb{O})\simeq\mathbb{R}^7$ carries special geometric structures:

• The vector cross product $\times : \Lambda^2(\mathbb{R}^7) \to \mathbb{R}^7$:

$$x \times y := \frac{1}{2}(xy - yx) = -\operatorname{Im}(yx).$$

Facts: \times is alternating, satisfies $x \times y \perp x$, and $||x \times y|| = ||x \wedge y||$.

• The associative 3-form $\phi_0 \in \Lambda^3(\mathbb{R}^7)$:

$$\phi_0(x, y, z) := \langle x \times y, z \rangle.$$

Let $\{1, e_1, e_2, \ldots, e_7\}$ the standard basis of $\mathbb{O} \simeq \mathbb{R}^8$. Then:

$$\phi_0=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356}$$
 where $e^{ijk}:=e^i\wedge e^j\wedge e^k.$

 $\mathsf{Im}(\mathbb{O})\simeq\mathbb{R}^7$ carries special geometric structures:

• The vector cross product $\times : \Lambda^2(\mathbb{R}^7) \to \mathbb{R}^7$:

$$x\times y:=\tfrac{1}{2}(xy-yx)=-\mathsf{Im}(yx).$$

Facts: \times is alternating, satisfies $x \times y \perp x$, and $||x \times y|| = ||x \wedge y||$.

• The associative 3-form $\phi_0 \in \Lambda^3(\mathbb{R}^7)$:

$$\phi_0(x, y, z) := \langle x \times y, z \rangle.$$

Let $\{1, e_1, e_2, \ldots, e_7\}$ the standard basis of $\mathbb{O} \simeq \mathbb{R}^8$. Then:

$$\phi_0 = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}$$

where $e^{ijk} := e^i \wedge e^j \wedge e^k$.

Analogy: In $\mathbb{C}^n = \mathbb{R}^{2n}$, the **Kähler** 2-form is $\omega(x, y) := \langle Jx, y \rangle$. The pair (J, ω) on \mathbb{R}^{2n} is analogous to (\times, ϕ_0) on \mathbb{R}^7 . Let $V=\mathbb{R}^7.$ For each 3-form $\gamma\in\Lambda^3(V^*),$ define a symmetric bilinear form

$$B_{\gamma} \colon \mathsf{Sym}^{2}(V) \to \Lambda^{7}(V^{*})$$
$$B_{\gamma}(x, y) := \frac{1}{6} (\iota_{x} \gamma) \wedge (\iota_{y} \gamma) \wedge \gamma.$$

Let $V=\mathbb{R}^7.$ For each 3-form $\gamma\in\Lambda^3(V^*),$ define a symmetric bilinear form

$$B_{\gamma} \colon \operatorname{Sym}^{2}(V) \to \Lambda^{7}(V^{*})$$
$$B_{\gamma}(x, y) := \frac{1}{6} (\iota_{x} \gamma) \wedge (\iota_{y} \gamma) \wedge \gamma.$$

Say $\gamma \in \Lambda^3(V^*)$ is **definite** if B_γ is definite. Let

$$\Lambda^3_+(V^*) := \{ \mathsf{Definite 3-forms} \} \subset \Lambda^3(V^*).$$

Let $V=\mathbb{R}^7.$ For each 3-form $\gamma\in\Lambda^3(V^*),$ define a symmetric bilinear form

$$\begin{split} B_{\gamma} \colon \mathsf{Sym}^{2}(V) &\to \Lambda^{7}(V^{*}) \\ B_{\gamma}(x,y) &:= \frac{1}{6} \left(\iota_{x} \gamma \right) \wedge \left(\iota_{y} \gamma \right) \wedge \gamma. \end{split}$$

Say $\gamma \in \Lambda^3(V^*)$ is **definite** if B_γ is definite. Let

$$\Lambda^3_+(V^*) := \{ \mathsf{Definite 3-forms} \} \subset \Lambda^3(V^*).$$

Upshot: If γ is definite, then

$$\tfrac{1}{6}\left(\iota_x\gamma\right)\wedge\left(\iota_y\gamma\right)\wedge\gamma=g_\gamma(x,y)\operatorname{vol}_\gamma$$

for some positive-definite inner product g_{γ} and orientation form vol_{γ} on $V=\mathbb{R}^7.$

$\mathsf{Im}(\mathbb{O})$ and G_2

Consider the usual $GL_7(\mathbb{R})$ -action on $V = \mathbb{R}^7$. This gives a $GL_7(\mathbb{R})$ -action on $\Lambda^3(V^*)$ via change-of-coordinates (pullback):

 $\gamma\mapsto A^*\gamma$

$\mathsf{Im}(\mathbb{O})$ and G_2

Consider the usual $GL_7(\mathbb{R})$ -action on $V = \mathbb{R}^7$. This gives a $GL_7(\mathbb{R})$ -action on $\Lambda^3(V^*)$ via change-of-coordinates (pullback):

 $\gamma \mapsto A^* \gamma$

Fundamental Facts: Let $\phi_0 \in \Lambda^3(V^*)$ the associative 3-form. (a) The orbit of ϕ_0 is the set of definite 3-forms:

$$\{A^*\phi_0\colon A\in \mathsf{GL}_7(\mathbb{R})\}=\Lambda^3_+(V^*).$$

Consider the usual $GL_7(\mathbb{R})$ -action on $V = \mathbb{R}^7$. This gives a $GL_7(\mathbb{R})$ -action on $\Lambda^3(V^*)$ via change-of-coordinates (pullback):

 $\gamma \mapsto A^* \gamma$

Fundamental Facts: Let $\phi_0 \in \Lambda^3(V^*)$ the associative 3-form. (a) The orbit of ϕ_0 is the set of definite 3-forms:

$$\{A^*\phi_0\colon A\in \mathsf{GL}_7(\mathbb{R})\}=\Lambda^3_+(V^*).$$

(b) (Bryant) The stabilizer of ϕ_0 is the Lie group G₂:

$$\mathsf{G}_2 = \{ A \in \mathsf{GL}_7(\mathbb{R}) \colon A^* \phi_0 = \phi_0 \}.$$

 G_2 -geometers often regard this as a working **definition** of G_2 .

Consider the usual $GL_7(\mathbb{R})$ -action on $V = \mathbb{R}^7$. This gives a $GL_7(\mathbb{R})$ -action on $\Lambda^3(V^*)$ via change-of-coordinates (pullback):

 $\gamma\mapsto A^*\gamma$

Fundamental Facts: Let $\phi_0 \in \Lambda^3(V^*)$ the associative 3-form. (a) The orbit of ϕ_0 is the set of definite 3-forms:

$$\{A^*\phi_0 \colon A \in \mathsf{GL}_7(\mathbb{R})\} = \Lambda^3_+(V^*).$$

(b) (Bryant) The stabilizer of ϕ_0 is the Lie group G₂:

$$\mathsf{G}_2 = \{ A \in \mathsf{GL}_7(\mathbb{R}) \colon A^* \phi_0 = \phi_0 \}.$$

 $\mathsf{G}_2\text{-}\mathsf{geometers}$ often regard this as a working definition of $\mathsf{G}_2.$

Corollary: $\operatorname{Orbit}(\phi_0) = \Lambda^3_+(V^*)$ is an **open set** in $\Lambda^3(V^*) \simeq \mathbb{R}^{35}$.

Let M^7 smooth 7-manifold. A **G**₂-structure on M^7 is a definite 3-form $\varphi \in \Omega^3(M)$. In other words (TFAE):

Let M^7 smooth 7-manifold. A **G**₂-structure on M^7 is a definite 3-form $\varphi \in \Omega^3(M)$. In other words (TFAE):

(i) For each $x \in M$: $\varphi|_x$ is a definite 3-form.

i.e.: For each $x \in M$: The symmetric bilinear form

$$B_{\varphi}(v,w)\big|_{x} := \frac{1}{6} \left(\iota_{v}\varphi\right) \wedge \left(\iota_{w}\varphi\right) \wedge \varphi\big|_{x}$$

is definite.

Let M^7 smooth 7-manifold. A **G**₂-structure on M^7 is a definite 3-form $\varphi \in \Omega^3(M)$. In other words (TFAE):

(i) For each $x \in M$: $\varphi|_x$ is a definite 3-form.

i.e.: For each $x \in M$: The symmetric bilinear form

$$B_{\varphi}(v,w)\big|_{x} := \frac{1}{6} \left(\iota_{v}\varphi\right) \wedge \left(\iota_{w}\varphi\right) \wedge \varphi\big|_{x}$$

is definite.

(ii) For each $x \in M$: There exists an isomorphism $L: T_x M \to \mathbb{R}^7$ s.t.

$$\varphi|_x = L^*(\phi_0).$$

Let M^7 smooth 7-manifold. A **G**₂-structure on M^7 is a definite 3-form $\varphi \in \Omega^3(M)$. In other words (TFAE):

(i) For each $x \in M$: $\varphi|_x$ is a definite 3-form.

i.e.: For each $x \in M$: The symmetric bilinear form

$$B_{\varphi}(v,w)\big|_{x} := \frac{1}{6} \left(\iota_{v}\varphi\right) \wedge \left(\iota_{w}\varphi\right) \wedge \varphi\big|_{x}$$

is definite.

(ii) For each $x \in M$: There exists an isomorphism $L: T_x M \to \mathbb{R}^7$ s.t.

$$\varphi|_x = L^*(\phi_0).$$

i.e.: For each $x \in M$: There exists a frame (e_1, \ldots, e_7) at x s.t.

$$\varphi|_x = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}$$
Let M^7 smooth 7-manifold. A **G**₂-structure on M^7 is a definite 3-form $\varphi \in \Omega^3(M)$. In other words (TFAE):

(i) For each $x \in M$: $\varphi|_x$ is a definite 3-form.

i.e.: For each $x \in M$: The symmetric bilinear form

$$B_{\varphi}(v,w)\big|_{x} := \frac{1}{6} \left(\iota_{v}\varphi\right) \wedge \left(\iota_{w}\varphi\right) \wedge \varphi\big|_{x}$$

is definite.

(ii) For each $x \in M$: There exists an isomorphism $L: T_x M \to \mathbb{R}^7$ s.t.

$$\varphi|_x = L^*(\phi_0).$$

i.e.: For each $x \in M$: There exists a frame (e_1, \ldots, e_7) at x s.t.

$$\varphi|_x = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}$$

Summary: A G₂-structure $\varphi \in \Omega^3(M)$ identifies

 $(T_x M, \varphi|_x) \simeq (\operatorname{Im}(\mathbb{O}), \phi_0).$

Fact: M^7 admits a G₂-structure $\iff M^7$ orientable and spin.

Fact: M^7 admits a G₂-structure $\iff M^7$ orientable and spin.

• A G2-structure $\varphi\in\Omega^3(M)$ induces a canonical Riemannian metric g_φ and orientation vol_φ via

$$\begin{split} g_{\varphi}(v,w) \operatorname{vol}_{\varphi} &= \frac{1}{6} \left(\iota_{v} \varphi \right) \wedge \left(\iota_{w} \varphi \right) \wedge \varphi \\ \operatorname{vol}_{\varphi} &= \frac{1}{7} \varphi \wedge \ast \varphi \end{split}$$

• A G2-structure yields a vector cross product $\times \colon TM \times TM \to TM$ via

$$\varphi(x, y, z) = g_{\varphi}(x \times y, z).$$

Fact: M^7 admits a G₂-structure $\iff M^7$ orientable and spin.

• A G₂-structure $\varphi \in \Omega^3(M)$ induces a canonical Riemannian metric g_{φ} and orientation $\operatorname{vol}_{\varphi}$ via

$$\begin{split} g_{\varphi}(v,w)\operatorname{vol}_{\varphi} &= \frac{1}{6}\left(\iota_{v}\varphi\right)\wedge\left(\iota_{w}\varphi\right)\wedge\varphi\\ \operatorname{vol}_{\varphi} &= \frac{1}{7}\,\varphi\wedge\ast\varphi \end{split}$$

• A G2-structure yields a vector cross product $\times \colon TM \times TM \to TM$ via

$$\varphi(x, y, z) = g_{\varphi}(x \times y, z).$$

Warnings:

 \bullet The map $\varphi\mapsto g_{\varphi}$ is not injective. Different G2-structures may induce the same metric.

• The map $\varphi \mapsto g_{\varphi}$ is highly nonlinear.

• The Hodge star * is determined by $(g_{\varphi}, \mathrm{vol}_{\varphi}),$ which depends nonlinearly on $\varphi.$

Let φ be a G₂-structure.

- φ closed if: $d\varphi = 0$.
- φ co-closed if: $d * \varphi = 0$.
- φ torsion-free if: $d\varphi = 0$ and $d * \varphi = 0$.

Let φ be a G₂-structure.

- φ closed if: $d\varphi = 0$.
- φ co-closed if: $d * \varphi = 0$.
- φ torsion-free if: $d\varphi = 0$ and $d * \varphi = 0$.

Def: A **G**₂-manifold (M^7, φ) is a 7-manifold with a torsion-free G₂-structure $\varphi \in \Omega^3(M)$:

$$d\varphi = 0 \qquad \qquad d*\varphi = 0.$$

Example: (\mathbb{R}^7, ϕ_0) is a G₂-manifold. Note Hol $(g_0) = \{ \mathsf{Id} \}$.

Let φ be a G₂-structure.

- φ closed if: $d\varphi = 0$.
- φ co-closed if: $d * \varphi = 0$.
- φ torsion-free if: $d\varphi = 0$ and $d * \varphi = 0$.

Def: A **G**₂-manifold (M^7, φ) is a 7-manifold with a torsion-free G₂-structure $\varphi \in \Omega^3(M)$:

$$d\varphi = 0 \qquad \qquad d*\varphi = 0.$$

Example: (\mathbb{R}^7, ϕ_0) is a G₂-manifold. Note Hol $(g_0) = \{ \mathsf{Id} \}$.

Q: How do G₂-manifolds relate to G₂-holonomy metrics?

Let φ be a G₂-structure.

- φ closed if: $d\varphi = 0$.
- φ co-closed if: $d * \varphi = 0$.
- φ torsion-free if: $d\varphi = 0$ and $d * \varphi = 0$.

Def: A **G**₂-manifold (M^7, φ) is a 7-manifold with a torsion-free G₂-structure $\varphi \in \Omega^3(M)$:

$$d\varphi = 0 \qquad \qquad d*\varphi = 0.$$

Example: (\mathbb{R}^7, ϕ_0) is a G₂-manifold. Note Hol $(g_0) = \{ \mathsf{Id} \}$.

Q: How do G₂-manifolds relate to G₂-holonomy metrics?

Fernández-Gray ('82): Let M^7 orientable, spin. (a) Let $\varphi \in \Omega^3(M)$ be a G₂-structure.

$$d\varphi = 0 \ \text{ and } \ d\ast \varphi = 0 \ \implies \ \mathsf{Hol}(g_\varphi) \leq \mathsf{G}_2.$$

Let φ be a G₂-structure.

- φ closed if: $d\varphi = 0$.
- φ co-closed if: $d * \varphi = 0$.
- φ torsion-free if: $d\varphi = 0$ and $d * \varphi = 0$.

Def: A G₂-manifold (M^7, φ) is a 7-manifold with a torsion-free G₂-structure $\varphi \in \Omega^3(M)$:

$$d\varphi = 0 \qquad \qquad d*\varphi = 0.$$

Example: (\mathbb{R}^7, ϕ_0) is a G₂-manifold. Note Hol $(g_0) = \{ \mathsf{Id} \}$.

Q: How do G₂-manifolds relate to G₂-holonomy metrics?

Fernández-Gray ('82): Let M^7 orientable, spin. (a) Let $\varphi \in \Omega^3(M)$ be a G₂-structure.

$$d\varphi = 0$$
 and $d * \varphi = 0 \implies \operatorname{Hol}(g_{\varphi}) \leq \mathsf{G}_2.$

(b) Let g be a metric on M.

 $\mathsf{Hol}(g) \leq \mathsf{G}_2 \implies g = g_{\varphi} \;\; \exists \mathsf{G}_2 \text{-str. } \varphi \text{ with } d\varphi = 0 \text{ and } d \ast \varphi = 0.$

$$d\varphi = 0 \text{ and } d * \varphi = 0 \implies \operatorname{Hol}(g_{\varphi}) \leq \mathsf{G}_2.$$

(b) Let g be a metric on M.

 $\mathsf{Hol}(g) \leq \mathsf{G}_2 \;\; \Longrightarrow \;\; g = g_\varphi \;\; \exists \mathsf{G}_2 \text{-}\mathsf{str.} \; \varphi \; \mathsf{with} \; d\varphi = 0 \; \mathsf{and} \; d \ast \varphi = 0.$

$$d\varphi = 0$$
 and $d * \varphi = 0 \implies \operatorname{Hol}(g_{\varphi}) \leq \mathsf{G}_2.$

(b) Let g be a metric on M.

 $\mathsf{Hol}(g) \leq \mathsf{G}_2 \;\; \Longrightarrow \;\; g = g_\varphi \;\; \exists \mathsf{G}_2 \text{-str. } \varphi \text{ with } d\varphi = 0 \text{ and } d \ast \varphi = 0.$

Bonan ('66): Every G₂-manifold is Ricci-flat.

$$d\varphi = 0 \text{ and } d * \varphi = 0 \implies \operatorname{Hol}(g_{\varphi}) \leq \mathsf{G}_2.$$

(b) Let g be a metric on M.

 $\mathsf{Hol}(g) \leq \mathsf{G}_2 \;\; \Longrightarrow \;\; g = g_\varphi \;\; \exists \mathsf{G}_2 \text{-}\mathsf{str.} \; \varphi \; \mathsf{with} \; d\varphi = 0 \; \mathsf{and} \; d \ast \varphi = 0.$

Bonan ('66): Every G₂-manifold is Ricci-flat.

Bryant Criterion ('87): Let (M^7, g) simply-connected, $Hol(g) \leq G_2$. Then:

 $Hol(g) = G_2 \iff$ There are no (non-zero) parallel 1-forms.

$$d\varphi = 0 \text{ and } d * \varphi = 0 \implies \operatorname{Hol}(g_{\varphi}) \leq \mathsf{G}_2.$$

(b) Let g be a metric on M.

 $\mathsf{Hol}(g) \leq \mathsf{G}_2 \;\; \Longrightarrow \;\; g = g_\varphi \;\; \exists \mathsf{G}_2 \text{-str. } \varphi \text{ with } d\varphi = 0 \text{ and } d \ast \varphi = 0.$

Bonan ('66): Every G₂-manifold is Ricci-flat.

Bryant Criterion ('87): Let (M^7, g) simply-connected, $Hol(g) \leq G_2$. Then:

 $Hol(g) = G_2 \iff$ There are no (non-zero) parallel 1-forms.

Joyce Criterion ('96): Let (M^7, g) compact, $Hol(g) \leq G_2$. Then:

$$\operatorname{Hol}(g) = \operatorname{G}_2 \quad \Longleftrightarrow \quad \pi_1(M) \text{ finite.}$$

Strategy: Let M^7 orientable, spin. To construct g with $Hol(g) = G_2$: 1. (Non-trivial) Construct torsion-free G_2 -structure φ . i.e.: Find G_2 -structure solving the nonlinear PDE system

$$d\varphi = 0$$
$$d * \varphi = 0.$$

Then $\operatorname{Hol}(g_{\varphi}) \leq \mathsf{G}_2$.

2. Apply Bryant's Criterion or Joyce's Criterion.

Strategy: Let M^7 orientable, spin. To construct g with $Hol(g) = G_2$: 1. (Non-trivial) Construct torsion-free G_2 -structure φ . i.e.: Find G_2 -structure solving the nonlinear PDE system

$$d\varphi = 0$$
$$d * \varphi = 0.$$

Then $\operatorname{Hol}(g_{\varphi}) \leq \mathsf{G}_2$.

2. Apply Bryant's Criterion or Joyce's Criterion.

Remark: If M^7 compact, then there are topological obstructions to existence of G_2 -holonomy metrics. Necessary conditions are:

- $\pi_1(M)$ finite
- $b^{3}(M) \ge 1$ (where $b^{3}(M) = \dim(H^{3}(M; \mathbb{R}))$)
- $p_1(M) \neq 0$ (where $p_1(M) =$ first Pontryagin class).

Hard Open Problem: Let M^7 compact (orientable, spin). Find necessary and sufficient conditions for M^7 to admit G₂-holonomy metrics.

Strategy: Let M^7 orientable, spin. To construct g with $Hol(g) = G_2$: 1. (Non-trivial) Construct torsion-free G₂-structure φ . i.e.: Find G₂-structure solving the nonlinear PDE system

$$d\varphi = 0$$
$$d * \varphi = 0.$$

Then $\operatorname{Hol}(g_{\varphi}) \leq \mathsf{G}_2$.

2. Apply Bryant's Criterion or Joyce's Criterion.

Constructing torsion-free G_2 -structures is not easy. Most (all?) examples use one of the following ideas:

Idea 1: 7 = 6 + 1. (Build M^7 from Calabi-Yau X^6 or nearly-Kähler X^6) Idea 2: 7 = 4 + 3. **Bryant ('87):** On small balls in \mathbb{R}^7 : There exist G₂-holonomy metrics.

Bryant ('87): On small balls in \mathbb{R}^7 : There exist G₂-holonomy metrics. The generic metric depends on 6 arbitrary functions of 6 variables (in the sense of exterior differential systems) up to diffeomorphism. **Bryant ('87):** On small balls in \mathbb{R}^7 : There exist G₂-holonomy metrics. The generic metric depends on 6 arbitrary functions of 6 variables (in the sense of exterior differential systems) up to diffeomorphism.

Bryant ('87): Constructed the first explicit example of $Hol(g) = G_2$.

Bryant ('87): On small balls in \mathbb{R}^7 : There exist G₂-holonomy metrics. The generic metric depends on 6 arbitrary functions of 6 variables (in the sense of exterior differential systems) up to diffeomorphism.

Bryant ('87): Constructed the first explicit example of $Hol(g) = G_2$. Consider $F^6 = SU(3)/T^2$. Equip F with a certain homogeneous metric g_F (its homogeneous nearly-Kähler metric). Then

$$M^7 := \mathsf{Cone}(F^6) = \mathbb{R}^+ \times \frac{\mathsf{SU}(3)}{T^2}$$

with cone metric

$$g_M := dr^2 + r^2 g_F$$

has $\operatorname{Hol}(g_M) = \mathsf{G}_2$.

Bryant-Salamon ('89): First examples of **complete** metrics with $Hol(g) = G_2$. They found **three** one-parameter families.

Bryant-Salamon ('89): First examples of **complete** metrics with $Hol(g) = G_2$. They found **three** one-parameter families.

As smooth manifolds: Their examples are total spaces of vector bundles:

$$\pi\colon (M^7, g_M) \to (B, g_B).$$

- $\Lambda^2_+(\mathbb{S}^4)$ is a rank 3 vector bundle over \mathbb{S}^4
- $\Lambda^2_+(\mathbb{CP}^2)$ is a rank 3 vector bundle over \mathbb{CP}^2
- $\mathcal{S}(\mathbb{S}^3)$ is a rank 4 vector bundle over \mathbb{S}^3

Bryant-Salamon ('89): First examples of **complete** metrics with $Hol(g) = G_2$. They found **three** one-parameter families.

As smooth manifolds: Their examples are total spaces of vector bundles:

$$\pi\colon (M^7, g_M) \to (B, g_B).$$

- $\bullet \ \Lambda^2_+(\mathbb{S}^4)$ is a rank 3 vector bundle over \mathbb{S}^4
- $\Lambda^2_+(\mathbb{CP}^2)$ is a rank 3 vector bundle over \mathbb{CP}^2
- $\mathcal{S}(\mathbb{S}^3)$ is a rank 4 vector bundle over \mathbb{S}^3

Geometrically:

• Bundle metrics: Metric has form

$$g_M = f(r)^2 \alpha + g(r)^2 \pi^*(g_B)$$

where $\alpha|_{\text{fiber}} = \text{flat}$ metric and r = radius in fibers.

Bryant-Salamon ('89): First examples of **complete** metrics with $Hol(g) = G_2$. They found **three** one-parameter families.

As smooth manifolds: Their examples are total spaces of vector bundles:

$$\pi\colon (M^7, g_M) \to (B, g_B).$$

- $\bullet \ \Lambda^2_+(\mathbb{S}^4)$ is a rank 3 vector bundle over \mathbb{S}^4
- $\Lambda^2_+(\mathbb{CP}^2)$ is a rank 3 vector bundle over \mathbb{CP}^2
- $\mathcal{S}(\mathbb{S}^3)$ is a rank 4 vector bundle over \mathbb{S}^3

Geometrically:

• Bundle metrics: Metric has form

$$g_M = f(r)^2 \alpha + g(r)^2 \pi^*(g_B)$$

where $\alpha|_{\text{fiber}} = \text{flat}$ metric and r = radius in fibers.

• Symmetry: They are all cohomogeneity-one.

Bryant-Salamon ('89): First examples of **complete** metrics with $Hol(g) = G_2$. They found **three** one-parameter families.

As smooth manifolds: Their examples are total spaces of vector bundles:

$$\pi\colon (M^7, g_M) \to (B, g_B).$$

- $\bullet \ \Lambda^2_+(\mathbb{S}^4)$ is a rank 3 vector bundle over \mathbb{S}^4
- $\Lambda^2_+(\mathbb{CP}^2)$ is a rank 3 vector bundle over \mathbb{CP}^2
- $\mathcal{S}(\mathbb{S}^3)$ is a rank 4 vector bundle over \mathbb{S}^3

Geometrically:

• Bundle metrics: Metric has form

$$g_M = f(r)^2 \alpha + g(r)^2 \pi^*(g_B)$$

where $\alpha|_{\text{fiber}} = \text{flat}$ metric and r = radius in fibers.

- Symmetry: They are all cohomogeneity-one.
- At infinity: They are all asymptotic to G_2 -holonomy cones.

Compact Examples: Joyce's Theorem

Idea: Let (M^7, φ) compact with closed G₂-structure that is "almost" co-closed:

 $d\varphi = 0$ and $d * \varphi$ small.

Then maybe one could perturb $\varphi \rightsquigarrow \widetilde{\varphi}$ where $\widetilde{\varphi}$ is torsion-free.

Compact Examples: Joyce's Theorem

Idea: Let (M^7,φ) compact with closed ${\rm G_2}\mbox{-structure that is "almost" co-closed:}$

 $d\varphi = 0$ and $d * \varphi$ small.

Then maybe one could perturb $\varphi \rightsquigarrow \widetilde{\varphi}$ where $\widetilde{\varphi}$ is torsion-free.

An almost G₂-structure (φ, ψ) is a closed G₂-structure φ and a 3-form ψ such that $d^*\varphi = d^*\psi$.

Compact Examples: Joyce's Theorem

Idea: Let (M^7, φ) compact with closed G₂-structure that is "almost" co-closed:

 $d\varphi = 0$ and $d * \varphi$ small.

Then maybe one could perturb $\varphi \rightsquigarrow \widetilde{\varphi}$ where $\widetilde{\varphi}$ is torsion-free.

An almost G₂-structure (φ, ψ) is a closed G₂-structure φ and a 3-form ψ such that $d^*\varphi = d^*\psi$.

Joyce's Perturbation Theorem ('96): Fix constants $A_1, A_2, A_3 > 0$. Then there exists an interval (0,T] with T > 0 and a constant K > 0 such that:

If M^7 compact has a one-parameter family $(\varphi_t,\psi_t)_{t\in(0,T]}$ of almost G2-structures satisfying

(a) $\|\psi_t\|_{L^2} \le A_1 t^4$ and $\|\psi_t\|_{C^0} \le A_1 t^{1/2}$ and $\|d^*\psi_t\|_{L^{14}} \le A_1$ (b) $\operatorname{inj}(g_{\varphi_t}) \ge A_2 t$ (c) $\|R(g_{\varphi_t})\|_{C^0} \le A_3 t^{-2}$

then M^7 admits torsion-free G₂-structures $\tilde{\varphi}_t$ with

$$\|\widetilde{\varphi}_t - \varphi_t\|_{C^0} \le K t^{1/2}.$$

Compact Examples

Finding compact (M^7,φ) with $d\varphi=0$ and $d\ast\varphi$ small is very hard, but examples are known:

Compact Examples

Finding compact (M^7,φ) with $d\varphi=0$ and $d\ast\varphi$ small is very hard, but examples are known:

Compact 7-Manifolds with G_2 Holonomy:

• Joyce ('96): G₂ Kummer Construction

Finding compact (M^7,φ) with $d\varphi=0$ and $d\ast\varphi$ small is very hard, but examples are known:

Compact 7-Manifolds with G_2 Holonomy:

- Joyce ('96): G₂ Kummer Construction
- Twisted Connected Sum Construction
 - Kovalev ('03)
 - Corti-Haskins-Nordstrom-Pacini ('12)

Finding compact (M^7,φ) with $d\varphi=0$ and $d\ast\varphi$ small is very hard, but examples are known:

Compact 7-Manifolds with G_2 Holonomy:

- Joyce ('96): G₂ Kummer Construction
- Twisted Connected Sum Construction
 - Kovalev ('03)
 - Corti-Haskins-Nordstrom-Pacini ('12)
- Joyce-Karigiannis ('17)

Finding compact (M^7, φ) with $d\varphi = 0$ and $d * \varphi$ small is very hard, but examples are known:

Compact 7-Manifolds with G_2 Holonomy:

- Joyce ('96): G₂ Kummer Construction
- Twisted Connected Sum Construction
 - Kovalev ('03)
 - Corti-Haskins-Nordstrom-Pacini ('12)
- Joyce-Karigiannis ('17)

Open Questions:

• If M^7 compact admits closed G₂-structure, must it also admit a torsion-free G₂-structure?

Finding compact (M^7,φ) with $d\varphi=0$ and $d\ast\varphi$ small is very hard, but examples are known:

Compact 7-Manifolds with G_2 Holonomy:

- Joyce ('96): G₂ Kummer Construction
- Twisted Connected Sum Construction
 - Kovalev ('03)
 - Corti-Haskins-Nordstrom-Pacini ('12)
- Joyce-Karigiannis ('17)

Open Questions:

• If M^7 compact admits closed G₂-structure, must it also admit a torsion-free G₂-structure?

• Does \mathbb{S}^7 admit a closed G₂-structure?

Finding compact (M^7,φ) with $d\varphi=0$ and $d\ast\varphi$ small is very hard, but examples are known:

Compact 7-Manifolds with G_2 Holonomy:

- Joyce ('96): G₂ Kummer Construction
- Twisted Connected Sum Construction
 - Kovalev ('03)
 - Corti-Haskins-Nordstrom-Pacini ('12)
- Joyce-Karigiannis ('17)

Open Questions:

• If M^7 compact admits closed G₂-structure, must it also admit a torsion-free G₂-structure?

- Does \mathbb{S}^7 admit a closed G₂-structure?
- How can we distinguish G₂-holonomy 7-manifolds?

Outline

- I. Holonomy
 - Definition & Properties
 - Berger's List
- II. G_2 Geometry
 - The Octonions
 - G₂-Structures on 7-Manifolds
 - G₂ Holonomy on 7-Manifolds
 - Examples
- III. Special Submanifolds
 - Calibrations
 - Associative 3-folds
 - Coassociative 4-folds