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Overview

Mon: Expository talk.
• Lecture 1 (Parts I, II): Holonomy & G2-Geometry

Tue: Expository talk.
• Lecture 1 (Part III): Associatives & Coassociatives
• Lecture 2: Nearly-Kähler Geometry & Holomorphic Curves

Wed: Research talk.
• Lecture 3: Closed Holomorphic Curves in S6

Fri: Research talk.
• Lecture 4: Free-Boundary Holomorphic Curves in NK 6-Mflds
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Holonomy: Definition

Let (Mn, g) connected Riemannian manifold.
Let γ : [0, 1]→M loop at x ∈M . Consider:

Pγ : TxM → TxM

Pγ(v) = parallel translation of v around γ

Holonomy group of (M, g) at x ∈M :

Hol(g)|x = {Pγ ∈ GL(TxM) : γ loop at x}.

Reduced holonomy group of (M, g) at x ∈M :

Hol0(g)
∣∣
x

= {Pγ ∈ GL(TxM) : γ null-homotopic loop at x}.

Group structure is via loop concatenation (just like for π1(M,x)):

Pα ◦ Pβ = Pαβ (Pα)−1 = Pα

where α is the reverse path of α.
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Holonomy: Properties

Parallel translation is an isometry. So:

Hol(g)|x ≤ O(TxM) Hol0(g)|x ≤ SO(TxM).

Basepoint Independence. Let γ path from x to y. Then

Hol(g)|y = Pγ ◦ Hol(g)|x ◦ P−1γ

∴ Can speak of Hol(g) and Hol0(g) as groups defined up to conjugation.

Properties:
• Hol0(g) is connected.
• Hol0(g) E Hol(g). (M simply-connected =⇒ Hol0(g) = Hol(g).)
• Hol0(g) is the identity component of Hol(g).
• (Borel-Lichnerowicz) Hol0(g) is a closed Lie subgroup of SO(n).

∴ Hol0(g) is a compact connected Lie group.
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Holonomy Algebra; Holonomy Representation

Hol0(g)|x ≤ SO(TxM) is a compact connected Lie group. Call its Lie
algebra

hol(g)|x ⊂ so(TxM) ∼= Λ2(T ∗xM)

the holonomy algebra of (M, g).

Remark: Hol0(g)|x is not just an abstract group: It comes with an
embedding into SO(TxM) (i.e.: There is an obvious action on TxM).

∴ Can think of Hol0(g) ≤ SO(n) as a representation.

Question: Why is the holonomy of (M, g) important? Answer:
Holonomy is intimately related to:
• Curvature
• Parallel tensor fields
• Extra geometric structure (compatible with g)
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Holonomy & Curvature

Let T = TxM . The Riemann curvature tensor Rm(g) ∈ (T ∗)⊗4 at
x ∈M has various symmetries (e.g.: Rijk` = −Rjik` = −Rij`k):

Rm(g)|x ∈ Sym2(Λ2(T ∗)) ⊂ (T ∗)⊗4

Fact: The holonomy algebra constrains the curvature:

Rm(g)|x ∈ Sym2(hol(g)|x) ⊂ Sym2(Λ2(T ∗)).

Ambrose-Singer Theorem (’53): The holonomy algebra is generated
by the curvature:

The holonomy algebra hol(g)|x ⊂ so(TxM) is the subspace spanned
by

{P−1γ ◦R(X,Y )|y ◦ Pγ
∣∣ γ path from x to y, X, Y ∈ TyM

}
where R(X,Y )|y ∈ so(TyM) is the Riemann curvature endomorphism.
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Holonomy & Parallel Tensors

The holonomy representation determines which tensor fields S are
parallel (i.e.: ∇S = 0):

Holonomy Principle: Let x ∈M .

(a) If S parallel tensor field, then S|x fixed by the Hol(g)|x-action on
TxM .

(b) If S0 fixed by the Hol(g)|x-action on TxM , then there is a unique
parallel tensor field S with S|x = S0.
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Holonomy & Extra Geometric Structure

Let (Mn, g) Riemannian n-manifold.

Theorem: Let G ≤ O(n). The following are equivalent:
(i) Hol(g) ≤ G.
(ii) There exists a G-structure on M that is g-compatible and

torsion-free.

We won’t define the terms “G-structure” or “g-compatible” or
“torsion-free” here.

Example: Let (Mn, g) have n even. Consider G = U(n2 ) ≤ O(n).
A “torsion-free U(n2 )-structure” is just a “Kähler structure”: A pair

(g, J), where J is a g-parallel, g-orthogonal complex structure. Therefore:

Hol(g) ≤ U(n2 ) ⇐⇒ g is a Kähler metric.
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Holonomy: Classification (Products)

Products: If g ∼= g1 × g2, then Hol(g) = Hol(g1)× Hol(g2).

Def: Let (M, g) Riemannian. Say:
• g globally reducible if: g ∼= g1 × g2.
• g locally reducible if: Every point in M has globally reducible

neighborhood.
• g irreducible if: g is not locally reducible.

∴ g globally reducible =⇒ Hol(g) is a product of holonomy groups &
The Hol(g)-representation is reducible. Conversely:

de Rham Decomposition: Suppose Hol(g)|x-representation is reducible
at some x ∈M . Then:
• (Local) Hol0(g) is a product group and g locally reducible.
• (Global) If also (M, g) is complete and simply connected, then

Hol(g) is a product of holonomy groups and g globally reducible.
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Holonomy: Classification (Locally Symmetric Spaces)

Say (M, g) is locally symmetric if:

∇R = 0.

Equiv: (M, g) is locally isometric to a simply-connected Riemannian
symmetric space.

É. Cartan (1927): Classified simply-connected Riemannian symmetric
spaces.

∴ Holonomy groups of locally symmetric spaces are classified.

Summary: If g locally reducible, or g locally symmetric, then we
understand Hol0(g).

What about the other cases (g not locally reducible and g not locally
symmetric)?
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Holonomy: Berger’s List

Berger’s List (’55): Let (Mn, g) simply-connected. Assume g not
locally reducible, not locally symmetric. Then Hol(g) is one of:

Hol(g) dim Name Curvature

SO(n)
U(n2 ) n = 2m
SU(n2 ) n = 2m
Sp(n4 ) n = 4m
Sp(n4 )Sp(1) n = 4m
G2 n = 7
Spin(7) n = 8
Spin(9) n = 16

Alekseevsky (’68), Brown-Gray (’72): Hol = Spin(9) =⇒ Symmetric
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Berger’s List (’55): Let (Mn, g) simply-connected. Assume g not
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Kähler
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Open: Are there compact, Ricci-flat (Mn, g) with Hol(g) = SO(n)?

Open: Are there compact, Ricci-flat, irreducible (M5, g)?
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The Octonions and G2

The Lie group G2 is intimately related to the octonions O ' R8.

Fact: Let A be a normed division algebra. Define

Aut(A) := {g ∈ GL(A) : g(xy) = g(x)g(y), ∀x, y ∈ A}.

Then:

Aut(R) = {Id}
Aut(C) ∼= Z2

Aut(H) ∼= SO(3)

Aut(O) ∼= G2

One can take G2 = Aut(O) as the definition of G2.

∴ To understand G2, we need to understand O.
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Normed Division Algebras

A normed division algebra is a pair (A, 〈·, ·〉) where:
• A is a finite-dim R-algebra (not necessarily associative) with unit 1;
• 〈·, ·〉 is a positive-definite inner product whose norm ‖ · ‖ satisfies

‖xy‖ = ‖x‖‖y‖, ∀x, y ∈ A.

Hurwitz Theorem: The only normed division algebras are:

R,C,H,O.

(Note: Generalizing “normed division algebra” to allow 〈·, ·〉 non-deg.

(not just positive-definite), one gets three more algebras: C̃, H̃, Õ.)

Def (unhelpful): The octonions O are the normed division algebra that
isn’t R,C,H.
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The Octonions

Def (8 = 4 + 4): The octonions O = H⊕H are pairs of quaternions
with multiplication law

(a, b) · (c, d) := (ac− db, da+ bc).

The inner product 〈·, ·〉 is the standard one on R8 = R4 ⊕ R4.

Def (8 = 1 + 7): The octonions O = spanR(1, e1, . . . , e7) are objects of
the form

x = x0 + x1e1 + · · ·+ x7e7

with multiplication defined by the table:

e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 e5 −e4 e7 −e6
e2 −e3 −1 e1 e6 −e7 −e4 e5
e3 e2 −e1 −1 −e7 −e6 e5 e4
e4 −e5 −e6 e7 −1 e1 e2 −e3
e5 e4 e7 e6 −e1 −1 −e3 −e2
e6 −e7 e4 −e5 −e2 e3 −1 e1
e7 e6 −e5 −e4 e3 e2 −e1 −1
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Algebra with O
Let Re(O) := span(1) ' R and Im(O) := span(e1, . . . , e7) ' R7, so

O = Re(O)⊕ Im(O) ' R⊕ R7.

Writing x ∈ O as x = Re(x) + Im(x), define

x := Re(x)− Im(x).

Note: Re(x) = 1
2 (x+ x) and Im(x) = 1

2 (x− x). Careful:

xy = y x.

Identities: Let x, y, z ∈ O. Then:

〈xz, yz〉 = 〈x, y〉‖z‖2 = 〈zx, zy〉
〈x, y〉 = Re(xy) = Re(xy).

and
x ⊥ y =⇒ xy = −yx.

The octonions are not associative, but they are alternative:

x(xy) = x2y (xy)y = xy2 (xy)x = x(yx).
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Geometry of Im(O) = R7

Im(O) ' R7 carries special geometric structures:

• The vector cross product × : Λ2(R7)→ R7:

x× y := 1
2 (xy − yx) = −Im(yx).

Facts: × is alternating, satisfies x× y ⊥ x, and ‖x× y‖ = ‖x ∧ y‖.

• The associative 3-form φ0 ∈ Λ3(R7):

φ0(x, y, z) := 〈x× y, z〉.

Let {1, e1, e2, . . . , e7} the standard basis of O ' R8. Then:

φ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356

where eijk := ei ∧ ej ∧ ek.

Analogy: In Cn = R2n, the Kähler 2-form is ω(x, y) := 〈Jx, y〉.
The pair (J, ω) on R2n is analogous to (×, φ0) on R7.
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Im(O) and G2

Let V = R7. For each 3-form γ ∈ Λ3(V ∗), define a symmetric bilinear
form

Bγ : Sym2(V )→ Λ7(V ∗)

Bγ(x, y) := 1
6 (ιxγ) ∧ (ιyγ) ∧ γ.

Say γ ∈ Λ3(V ∗) is definite if Bγ is definite. Let

Λ3
+(V ∗) := {Definite 3-forms} ⊂ Λ3(V ∗).

Upshot: If γ is definite, then

1
6 (ιxγ) ∧ (ιyγ) ∧ γ = gγ(x, y) volγ

for some positive-definite inner product gγ and orientation form volγ on
V = R7.
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Im(O) and G2

Consider the usual GL7(R)-action on V = R7. This gives a
GL7(R)-action on Λ3(V ∗) via change-of-coordinates (pullback):

γ 7→ A∗γ

Fundamental Facts: Let φ0 ∈ Λ3(V ∗) the associative 3-form.
(a) The orbit of φ0 is the set of definite 3-forms:

{A∗φ0 : A ∈ GL7(R)} = Λ3
+(V ∗).

(b) (Bryant) The stabilizer of φ0 is the Lie group G2:

G2 = {A ∈ GL7(R) : A∗φ0 = φ0}.

G2-geometers often regard this as a working definition of G2.

Corollary: Orbit(φ0) = Λ3
+(V ∗) is an open set in Λ3(V ∗) ' R35.
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G2-Structures on 7-Manifolds

Let M7 smooth 7-manifold. A G2-structure on M7 is a definite 3-form
ϕ ∈ Ω3(M). In other words (TFAE):

(i) For each x ∈M : ϕ|x is a definite 3-form.

i.e.: For each x ∈M : The symmetric bilinear form

Bϕ(v, w)|x := 1
6 (ιvϕ) ∧ (ιwϕ) ∧ ϕ

∣∣
x

is definite.

(ii) For each x ∈M : There exists an isomorphism L : TxM → R7 s.t.

ϕ|x = L∗(φ0).

i.e.: For each x ∈M : There exists a frame (e1, . . . , e7) at x s.t.

ϕ|x = e123 + e145 + e167 + e246 − e257 − e347 − e356

Summary: A G2-structure ϕ ∈ Ω3(M) identifies

(TxM,ϕ|x) ' (Im(O), φ0).
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(ii) For each x ∈M : There exists an isomorphism L : TxM → R7 s.t.

ϕ|x = L∗(φ0).

i.e.: For each x ∈M : There exists a frame (e1, . . . , e7) at x s.t.

ϕ|x = e123 + e145 + e167 + e246 − e257 − e347 − e356

Summary: A G2-structure ϕ ∈ Ω3(M) identifies

(TxM,ϕ|x) ' (Im(O), φ0).
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G2-Structures on 7-Manifolds

Fact: M7 admits a G2-structure ⇐⇒ M7 orientable and spin.

• A G2-structure ϕ ∈ Ω3(M) induces a canonical Riemannian metric gϕ
and orientation volϕ via

gϕ(v, w) volϕ = 1
6 (ιvϕ) ∧ (ιwϕ) ∧ ϕ

volϕ = 1
7 ϕ ∧ ∗ϕ

• A G2-structure yields a vector cross product × : TM × TM → TM
via

ϕ(x, y, z) = gϕ(x× y, z).

Warnings:
• The map ϕ 7→ gϕ is not injective. Different G2-structures may

induce the same metric.
• The map ϕ 7→ gϕ is highly nonlinear.
• The Hodge star ∗ is determined by (gϕ, volϕ), which depends

nonlinearly on ϕ.
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Classes of G2-Structures

Let ϕ be a G2-structure.
• ϕ closed if: dϕ = 0.
• ϕ co-closed if: d ∗ϕ = 0.
• ϕ torsion-free if: dϕ = 0 and d ∗ϕ = 0.

Def: A G2-manifold (M7, ϕ) is a 7-manifold with a torsion-free
G2-structure ϕ ∈ Ω3(M):

dϕ = 0 d ∗ϕ = 0.

Example: (R7, φ0) is a G2-manifold. Note Hol(g0) = {Id}.

Q: How do G2-manifolds relate to G2-holonomy metrics?

Fernández-Gray (’82): Let M7 orientable, spin.
(a) Let ϕ ∈ Ω3(M) be a G2-structure.

dϕ = 0 and d ∗ϕ = 0 =⇒ Hol(gϕ) ≤ G2.

(b) Let g be a metric on M .

Hol(g) ≤ G2 =⇒ g = gϕ ∃G2-str. ϕ with dϕ = 0 and d ∗ϕ = 0.
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G2-Manifolds

Fernández-Gray (’82): Let M7 orientable, spin.
(a) Let ϕ ∈ Ω3(M) be a G2-structure.

dϕ = 0 and d ∗ϕ = 0 =⇒ Hol(gϕ) ≤ G2.

(b) Let g be a metric on M .

Hol(g) ≤ G2 =⇒ g = gϕ ∃G2-str. ϕ with dϕ = 0 and d ∗ϕ = 0.

Bonan (’66): Every G2-manifold is Ricci-flat.

Bryant Criterion (’87): Let (M7, g) simply-connected, Hol(g) ≤ G2.
Then:

Hol(g) = G2 ⇐⇒ There are no (non-zero) parallel 1-forms.

Joyce Criterion (’96): Let (M7, g) compact, Hol(g) ≤ G2. Then:

Hol(g) = G2 ⇐⇒ π1(M) finite.
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G2 Holonomy

Strategy: Let M7 orientable, spin. To construct g with Hol(g) = G2:
1. (Non-trivial) Construct torsion-free G2-structure ϕ. i.e.: Find

G2-structure solving the nonlinear PDE system

dϕ = 0

d ∗ϕ = 0.

Then Hol(gϕ) ≤ G2.
2. Apply Bryant’s Criterion or Joyce’s Criterion.

Constructing torsion-free G2-structures is not easy. Most (all?) examples
use one of the following ideas:

Idea 1: 7 = 6 + 1.

(Build M7 from Calabi-Yau X6 or nearly-Kähler X6)

Idea 2: 7 = 4 + 3.

Remark: If M7 compact, then there are topological obstructions to
existence of G2-holonomy metrics. Necessary conditions are:
• π1(M) finite
• b3(M) ≥ 1 (where b3(M) = dim(H3(M ;R)))
• p1(M) 6= 0 (where p1(M) = first Pontryagin class).

Hard Open Problem: Let M7 compact (orientable, spin). Find
necessary and sufficient conditions for M7 to admit G2-holonomy metrics.
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Local Examples

Bryant (’87): On small balls in R7: There exist G2-holonomy metrics.

The generic metric depends on 6 arbitrary functions of 6 variables (in
the sense of exterior differential systems) up to diffeomorphism.

Bryant (’87): Constructed the first explicit example of Hol(g) = G2.
Consider F 6 = SU(3)/T 2. Equip F with a certain homogeneous

metric gF (its homogeneous nearly-Kähler metric). Then

M7 := Cone(F 6) = R+ × SU(3)

T 2

with cone metric
gM := dr2 + r2gF

has Hol(gM ) = G2.
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Complete Examples

Bryant-Salamon (’89): First examples of complete metrics with
Hol(g) = G2. They found three one-parameter families.

As smooth manifolds: Their examples are total spaces of vector bundles:

π : (M7, gM )→ (B, gB).

• Λ2
+(S4) is a rank 3 vector bundle over S4

• Λ2
+(CP2) is a rank 3 vector bundle over CP2

• /S(S3) is a rank 4 vector bundle over S3

Geometrically:
• Bundle metrics: Metric has form

gM = f(r)2α+ g(r)2 π∗(gB)

where α|fiber = flat metric and r = radius in fibers.
• Symmetry: They are all cohomogeneity-one.
• At infinity: They are all asymptotic to G2-holonomy cones.
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Compact Examples: Joyce’s Theorem

Idea: Let (M7, ϕ) compact with closed G2-structure that is “almost”
co-closed:

dϕ = 0 and d ∗ϕ small.

Then maybe one could perturb ϕ ϕ̃ where ϕ̃ is torsion-free.

An almost G2-structure (ϕ,ψ) is a closed G2-structure ϕ and a 3-form
ψ such that d∗ϕ = d∗ψ.

Joyce’s Perturbation Theorem (’96): Fix constants A1, A2, A3 > 0.
Then there exists an interval (0, T ] with T > 0 and a constant K > 0
such that:

If M7 compact has a one-parameter family (ϕt, ψt)t∈(0,T ] of almost
G2-structures satisfying

(a) ‖ψt‖L2 ≤ A1t
4 and ‖ψt‖C0 ≤ A1t

1/2 and ‖d∗ψt‖L14 ≤ A1

(b) inj(gϕt
) ≥ A2t

(c) ‖R(gϕt
)‖C0 ≤ A3t

−2

then M7 admits torsion-free G2-structures ϕ̃t with

‖ϕ̃t − ϕt‖C0 ≤ Kt1/2.
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Compact Examples

Finding compact (M7, ϕ) with dϕ = 0 and d ∗ϕ small is very hard, but
examples are known:

Compact 7-Manifolds with G2 Holonomy:
• Joyce (’96): G2 Kummer Construction

• Twisted Connected Sum Construction
◦ Kovalev (’03)
◦ Corti-Haskins-Nordstrom-Pacini (’12)

• Joyce-Karigiannis (’17)

Open Questions:
• If M7 compact admits closed G2-structure, must it also admit a

torsion-free G2-structure?
• Does S7 admit a closed G2-structure?
• How can we distinguish G2-holonomy 7-manifolds?

Jesse Madnick Intro to G2-Geometry



Compact Examples

Finding compact (M7, ϕ) with dϕ = 0 and d ∗ϕ small is very hard, but
examples are known:

Compact 7-Manifolds with G2 Holonomy:
• Joyce (’96): G2 Kummer Construction

• Twisted Connected Sum Construction
◦ Kovalev (’03)
◦ Corti-Haskins-Nordstrom-Pacini (’12)

• Joyce-Karigiannis (’17)

Open Questions:
• If M7 compact admits closed G2-structure, must it also admit a

torsion-free G2-structure?
• Does S7 admit a closed G2-structure?
• How can we distinguish G2-holonomy 7-manifolds?

Jesse Madnick Intro to G2-Geometry



Compact Examples

Finding compact (M7, ϕ) with dϕ = 0 and d ∗ϕ small is very hard, but
examples are known:

Compact 7-Manifolds with G2 Holonomy:
• Joyce (’96): G2 Kummer Construction

• Twisted Connected Sum Construction
◦ Kovalev (’03)
◦ Corti-Haskins-Nordstrom-Pacini (’12)

• Joyce-Karigiannis (’17)

Open Questions:
• If M7 compact admits closed G2-structure, must it also admit a

torsion-free G2-structure?
• Does S7 admit a closed G2-structure?
• How can we distinguish G2-holonomy 7-manifolds?
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