<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body>
<div dir="ltr">
<div align="center"><big><b><big>Welcome to the 2021 Fall talks of
ODTU-Bilkent Algebraic Geometry Seminars</big></b></big><b><br>
</b></div>
<div align="center"><i>since 2000</i><br>
</div>
<div align="center"><b><b>=================================================================</b></b><br>
<br>
This week the <a
href="http://www.bilkent.edu.tr/~sertoz/agseminar.htm"
target="_blank" moz-do-not-send="true">ODTU-Bilkent Algebraic
Geometry Seminar</a> is <b>Online.</b> <br>
<br>
<i><font color="#ff00ff">This talk will begin at <u><b>15:40</b></u><u> (GMT+3)</u></font></i><br>
<br>
<b>=================================================================</b></div>
<div align="center"><br>
<br>
<div align="center"><b><img
src="cid:part1.FrcrkuTZ.xVbM8f0q@bilkent.edu.tr"
alt="image.png" class="gmail-CToWUd gmail-a6T"
tabindex="0" style="cursor: pointer; outline: 0px;"
width="390" height="516"> </b></div>
<div align="center"><font size="-1"><i>Wassily Kandinsky
(1866-1944)<br>
</i></font></div>
<div align="left"><br>
<b><b><font color="#ff0000">Speaker:<font color="#000000"> Susumu
Tanabé<br>
</font></font></b></b></div>
<div align="left"><b><b><font color="#ff0000">Affiliation: <font
color="#000000">Galatasaray</font><br>
Title:<font color="#000000"> Asymptotic critical values
of a polynomial map<br>
</font><br>
</font></b></b></div>
</div>
<div align="left"><b><b><font color="#ff0000">Abstract: </font></b></b><font
color="#ff0000"><font color="#000000">The bifurcation locus of
a polynomial map f is the smallest subset B(f) such that f
realises a local trivialisation in the neighbourhood of each
point of the complement to B(f).<br>
<br>
It is known that the bifurcation locus B(f) is the union of
the set of critical values f(Sing f) and the set of
bifurcation values at infinity which may be non-empty and
disjoint from the critical value set f(Sing f). It is a
difficult task to find the bifurcation locus in the cases
for a polynomial depending on more than three variables.
Nevertheless, one can obtain approximations by supersets of
B(f) from exploiting asymptotical regularity conditions.
Jelonek and Kurdyka established an algorithm for finding a
superset of B(f): the set of asymptotic critical values.<br>
<br>
In this talk, we survey the history of the research of the
bifurcation locus and discuss recent results on the
asymptotic critical values.</font></font><br>
</div>
<div align="left"><font color="#ff0000"><font color="#000000"><br>
</font></font></div>
<div align="left"><font color="#ff0000"><font color="#000000"><b><font
color="#ff0000">Date:<font color="#000000"> 10 December
2021</font></font></b>, Friday</font></font><br>
</div>
<div align="left"><font color="#ff0000"><font color="#000000"><b><font
color="#ff0000">Time: </font>15:40 (GMT+3)</b><br>
<b><font color="#ff0000">Place: </font></b><font
color="#ff0000"><font color="#000000"><b>Zoom<br>
</b></font></font></font></font></div>
<div align="left"><font color="#ff0000"><font color="#000000"><font
color="#ff0000"><font color="#000000"><b><br>
</b></font></font></font></font></div>
<blockquote>
<p><font color="#ff0000"><font color="#000000"><font
color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">One
day before the seminar, an announcement with the
Zoom meeting link will be sent to those who
registered with Sertöz.<br>
</b></b></font></font></font></font></p>
<p><font color="#ff0000"><font color="#000000"><font
color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">If
you have registered before for one of the previous
talks, there is no need to register again; you
will automatically receive a link for this talk
too.<br>
</b></b></font></font></font></font></p>
<p><font color="#ff0000"><font color="#000000"><font
color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">If
you have not registered before, please contact him
at <a
href="mailto:sertoz@bilkent.edu.tr?subject=Zoom%20Seminar%20Address%20Request"
target="_blank" moz-do-not-send="true">sertoz@bilkent.edu.tr</a>.</b></b></font></font></font></font></p>
</blockquote>
<div align="left"><br>
</div>
<div align="left">Please bring your own tea and cookies and
self-serve at the convenience of your own home! 😁</div>
<div align="left"><br>
</div>
<div align="left">You are most cordially invited to attend.</div>
<div align="left"><br>
</div>
<div align="left">Ali Sinan Sertöz<br>
</div>
<pre cols="72" style="white-space:pre-wrap">----------------------------------------------------------------------------
Ali Sinan Sertöz
Bilkent University, Department of Mathematics, 06800 Ankara, Turkey
Office: (90)-(312) - 290 1490
Department: (90)-(312) - 266 4377
Fax: (90)-(312) - 290 1797
e-mail: <a href="mailto:sertoz@bilkent.edu.tr" target="_blank" moz-do-not-send="true" class="moz-txt-link-freetext">sertoz@bilkent.edu.tr</a>
Web: <a href="http://sertoz.bilkent.edu.tr/" target="_blank" moz-do-not-send="true">sertoz.bilkent.edu.tr</a>
----------------------------------------------------------------------------</pre>
</div>
</body>
</html>