<div dir="ltr">Dear list members,<br><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><br>You are most cordially invited to <span><span><span><span><span>Yeditepe Mathematics Department 25th Year Seminar</span></span></span></span></span>s. The details of this week's talk are as follows.</div><div dir="ltr"><br></div><div>
Speaker: Gülin Ercan (Middle East Technical University)</div><div><br><div>Title: Good Action,</div><div><br></div><div>Abstract: Let $G$ be a group acted on by a group $A$ by automorphisms. The nature of this action is very restrictive and hence informative about the structure of $G$. We have<br>been carrying on research in this area, especially on length type problems, in several<br>collaborated works over the years. The action is said to be coprime if $G$ and $A$ have<br>coprime orders. The existence of nice conditions which are valid in this case made<br>it almost traditional to assume that the action is coprime. After many attacks to a<br>longstanding noncoprime conjecture we have recently introduced the concept of a<br>good action of $A$ on $G$ in a joint work with Güloğlu and Jabara. We say the action<br>is “good” if $H = [H, B]C_H(B)$ for every subgroup $B$ of $A$ and for every $B$-invariant<br>subgroup $H$ of $G$. It can be regarded as a generalization of the coprime action due<br>to the fact that every coprime action is good and there are noncoprime actions<br>which are good. It is expected that this concept may help to understand the real<br>difficulties in studying a noncoprime action. We have achieved extending several<br>coprime results to good action case. With this talk I aim to present a review of<br>our results and discuss the main difficulties that arise in the study of a noncoprime<br>good action.</div><div><br></div><div><br></div></div><div>
<div>Date: Friday, December 17, 2021</div>
<div>Time: 16:00</div>
<div>Zoom Meeting ID: 889 3945 0567<br>Passcode: 7tpSeminar
</div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div>
</div><div><br></div><div>
<div dir="ltr"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div><div dir="ltr">----</div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div><div><br></div><div>Değerli liste üyeleri,</div><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div><div dir="ltr"><br></div>
</div><div dir="ltr"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr">Yeditepe Matematik Bölümü 25. Yıl Seminerleri kapsamında bu hafta yapılacak olan seminerin detayları aşağıdaki gibi olup tüm ilgilenenler davetlidir.
</div><div dir="ltr"><br></div><div>
<div>
Konuşmacı: Gülin Ercan (Middle East Technical University)</div><div><br><div>Başlık: Good Action<br><div><div>
</div></div>
<div>
</div></div><div><br></div><div>Özet: Let $G$ be a group acted on by a group $A$ by automorphisms. The nature of this<br>action is very restrictive and hence informative about the structure of $G$. We have<br>been carrying on research in this area, especially on length type problems, in several<br>collaborated works over the years. The action is said to be coprime if $G$ and $A$ have<br>coprime orders. The existence of nice conditions which are valid in this case made<br>it almost traditional to assume that the action is coprime. After many attacks to a<br>longstanding noncoprime conjecture we have recently introduced the concept of a<br>good action of $A$ on $G$ in a joint work with Güloğlu and Jabara. We say the action<br>is “good” if $H = [H, B]C_H(B)$ for every subgroup $B$ of $A$ and for every $B$-invariant<br>subgroup $H$ of $G$. It can be regarded as a generalization of the coprime action due<br>to the fact that every coprime action is good and there are noncoprime actions<br>which are good. It is expected that this concept may help to understand the real<br>difficulties in studying a noncoprime action. We have achieved extending several<br>coprime results to good action case. With this talk I aim to present a review of<br>our results and discuss the main difficulties that arise in the study of a noncoprime<br>good action.</div><div><br></div></div></div><div>
<div>Tarih: 17 Aralık 2021, Cuma<br></div>
<div>Saat: 16:00</div>
<div>Zoom Meeting ID: 889 3945 0567<br>Passcode: 7tpSeminar<br><div><br></div><div><br></div><div>Listing:<span> <a href="https://researchseminars.org/seminar/7tepemathseminars" target="_blank">https://researchseminars.org/seminar/7tepemathseminars</a><br></span></div><div><br><span></span></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr">
</div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>