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 4. L. J. Mordell, The minimum value of a definite integral, II, Aequat. Math. 2, 327-331
 (1969).

 5. F. Smithies, Two remarks on a note of Mordell, Mathi Gaz. LIV, 260-261 (No. 389,
 October 1970).

 Department of Pure Mathematics, University of Sheffield L. MIRSKY

 Independent axioms for vector spaces
 J. F. RIGBY AND JAMES WIEGOLD

 In a recent paper [1], Victor Bryant shows how the number of axioms
 required to define a vector space can be reduced to seven (in addition to
 closure requirements). The main result of his article is that commutativity
 of addition can be deduced from the other axioms. In the present article
 we show how to reduce this number to six. For certain underlying fields one
 or more of these axioms can be deduced from the others. However, the six
 axioms are in general independent; we invite interested readers to show this
 by constructing their own counter-examples, which the editor of the Gazette
 will be pleased to receive.

 The authors do not claim originality for all the proofs; those of theorems
 1 and 2, for instance, employ standard techniques.
 In an article such as this, dealing with the axiomatic basis of a subject,

 it is useful to emphasise that certain operations are distinct by using different
 symbols to denote them. Addition in a vector space is not usually the same
 thing as addition in the underlying field, nor is multiplication of a vector
 by a scalar usually the same thing as multiplication of two scalars; hence
 we use the slightly unfamiliar notation given below. Some such notation
 is not only useful but necessary when we come to construct counter-
 examples; this will be seen later in the article.

 Let F be a field with zero 0 and identity 1; we shall denote addition and
 multiplication in F by + and x. Let V be a set on which are defined (i) a
 binary operation of addition, denoted by O, under which V is closed, and
 (ii) a 'scalar multiplication' by elements of F, so that with each 2 in F and
 each a in V there is associated an element Aa in V. We shall consider the
 following axioms:

 1. (a ( b) O c = a O (b ( c) for all a, b, c in V,
 2. A(a O b) = aa O Ab for all A in F, all a, b in V,
 3. (A + u) a = 2a pa for all A, j in F, all a in V,
 4. (A x p) a = Al(a) for all 2, p in F, all a in V,
 5. Oa = Ob for all a, b in V,
 6. la=aforall a in V.

 We first prove two theorems that together show that if V satisfies all six
 axioms then it is a vector space over F.
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 AXIOMS FOR VECTOR SPACES

 THEOREM 1. If V satisfies axioms, 1, 3, 5, 6, then it is a group under @.

 PROOF. Let z denote the constant element given by axiom 5. Then, for all a
 in V,

 a= la= (1 +0)a= la ? Oa=a Oz;

 thus z is a right neutral of addition. Next, for all a in V,

 z = Oa = (1 + (-l))a = la @ (-l)a = a @ (-1)a;

 thus a has (-l)a as an additive right inverse relative to z. We can now either
 appeal to a general theorem to deduce that V is an additive group (see,
 e.g., [1]), or show directly that z is also a left neutral and that (-l)a is also a
 left inverse of a.

 THEOREM 2. If V satisfies axioms 1, 2, 3, 5, 6 then it is a commutative additive
 group (i.e., a commutative group under O).

 PROOF. For all a, b in V,

 aa a b b =(1 + )a ? (1 + )b-(l+l )(a b)
 = l(a ? b) @ l(a ( b) = a 3 b @ a @ b;

 since V is a group we deduce by cancellation that a @ b = b ? a.

 As an immediate corollary of theorems 1 and 2, we have

 THEOREM 3. If V satisfies all six axioms, then it is a vector space over F.

 To show that an axiom is independent of the remaining axioms, we must
 find a counter-example not satisfying the axiom concerned but satisfying
 all the others. Such a counter-example serves to show that the axiom cannot
 be deduced from the others. We shall consider each axiom from this point
 of view, taking them in order of difficulty. We start by constructing a counter-
 example for axiom 6, to encourage readers to construct their own for the
 various other axioms.

 Axiom 6. Given a field F, we construct an algebraic system V* as follows.
 Let V* = F; define a D b = a and Aa = 0 for all a, b in V* and all A in F.
 We can easily check that axioms 1-5 are satisfied in V*; for instance

 (a (b) c=a c=a, ( + )a = 0,
 a (b c)=a b=a, )a O #a=0 D 0=0.

 However, axiom 6 is not satisfied since la = 0 =: a (unless a = 0).
 As we mentioned earlier, if we were not using the special notation,

 the above definitions would become a + b = a, A x a = 0, which is confusing
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 THE MATHEMATICAL GAZETTE

 to say the least, and it would be impossible to see what was happening in the
 checking of the axioms.

 We use the notation "V*" here to emphasise that we are constructing
 a particular algebraic structure satisfying certain axioms, whereas we use
 "V" to denote the general structure satisfying certain axioms.

 In this counter-example, addition in V* is not commutative since a O b =
 a but b ( a = b, and V* is not a group since there is no neutral element
 z in V* such that z @ a = a for all a in V*. By changing the definition of
 a 0 b, it is easy to construct a counter-example (again satisfying axioms
 1-5 but not 6) in which V* is a commutative additive group. (See Hans
 Liebeck's article [3], but try it for yourself first; the article contains an
 interesting theorem about axiom 6.)

 It is natural to ask whether we can find (a) a counter-example in which V*
 is a non-commutative additive group, and (b) a counter-example in which
 V* is not an additive group but in which addition is commutative. Both
 types of counter-example can be constructed. Remember that in the
 counter-examples V* will not usually be the same set as F.

 We shall now consider in detail for each of the other axioms what sort

 of counter-example one can expect to construct not satisfying that axiom.

 Axiom 5. Counter-examples exist (satisfying axioms 1-4 and 6, but not
 5) in which addition in V* is either commutative or non-commutative. It
 is no use trying to construct a counter-example in which V* is an additive
 group. For suppose that V is an additive group with neutral element z,
 satisfying axioms 1-4 and 6; the reader may like to supply a proof that
 Oa = z for all a in V, so that axiom 5 is satisfied.

 We can however produce a counter-example in which V* has an additive
 neutral without being an additive group. Hence we cannot replace axiom 5
 by the axiom

 5*. V contains an additive neutral;

 this axiom, together with axioms 1-4 and 6, is not strong enough to ensure
 that Vis a vector space.

 Axiom 3. By taking V* = Fand defining addition in V* and scalar multi-
 plication suitably, counter-examples can be constructed in which addition
 in V* is either commutative or non-commutative, but in which V* is not an
 additive group.

 Counter-examples also exist in which V* is any given additive group.

 Axiom 1. Counter-examples exist in which addition in V* is either com-
 mutative or non-commutative. The authors' own counter-examples are not
 trivial but require only a basic knowledge of vector spaces for their con-
 struction.
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 AXIOMS FOR VECTOR SPACES

 Axiom 2. If all axioms except 2 are satisfied, Vmust be an additive group,
 by theorem 1.

 (i) The following theorem is easily proved.

 THEOREM 4. IfF is the field of only two elements, 0 and 1, axiom 2 is a conse-
 quence of the remaining axioms (in fact, a consequence of axioms 3, 5 and 6
 only).

 (ii) If F contains more than two elements, axiom 2 is not a consequence
 of the remaining axioms. In the counter-example constructed by the
 authors, V* is not a commutative additive group unless Fhas characteristic
 2 (i.e., unless 1 + 1 = 0 in F). If F does have characteristic 2, V* must be a
 commutative additive group in any counter-example, because we can easily
 prove

 THEOREM 5. If V satisfies axioms 1, 3, 5 and 6, and if F has characteristic 2,
 then a @ b = b ( afor all a, b in V.

 Can we produce a counter-example in which V* is a commutative additive
 group, when the characteristic of F is not 2 ? The answer depends on F, as
 we show in (iii) and (iv) below.

 (iii) In lemmas 1 and 2, and in theorem 6, we assume that F is the rational
 field, and that V is any structure satisfying all the axioms except 2, with
 the further assumption that addition in V is commutative.

 LEMMA 1. Ifp is a positive integer, then p(a @ b) = pa @ pbfor all a, b in V.

 PROOF.

 p(a G b)=(1 +1 +... + 1)(a b)
 = (a ? b) @ (a b) 0... ? (a b)
 =(a a O... a) (bObO... Ob)
 = (1 1 +... + I)a ? (1 + 1 +... + 1)b
 =pa 0pb.

 LEMMA 2. If p is a negative integer, of if p = , then p(a ? b) =pa pb.

 PROOF. If p =0 the proof is trivial. If p is negative, write p = -p'. Then
 p(a @ b) p'(a 0 b) = (p +p') (a O b) = O(a G b) = z = z O z by theorem 1,
 = ( )a(p +p')a) b = pa p' a pb O p'b =pa O pb p' a p'b
 =pa @ pb @ p'(a 0 b) by lemma 1. We know that V is a group; hence
 by the cancellation law p(a @ b) = pa O pb.

 THEOREM 6. A(a 0 b) = Aa 0 2bbfor all A in F, all a, b in V; i.e., when Fis the
 fieldof rationals and addition in Vis commutative then axiom 2 is a consequence
 of the remaining axioms.
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 PROOF. Write ) = p/q, where p and q are integers, q positive. Then

 2(a ) b) = x ( a- x b)= - [p(a b)] [pa O pb] bylemma 1 or 2,
 =_a q a) qq q b q a q q q

 [(q x) ax (q X q)b] =[q (qa) q(q)] - [q( a b)]

 by lemma 1, - ( x q) (i a b) = 1(a ?i b) = a ? b.

 Next, if F is a field of prime order, then every element of F can be written
 in the form 1 + 1 + ... + 1, and we show as in the proof of lemma 1 that
 axiom 2 is a consequence of the remaining axioms when addition in V is
 commutative.

 (iv) Suppose F is not the rational field or a field of prime order. Using
 rather deep properties of field extensions we can show the existence of
 counter-examples in which V* is a commutative additive group.

 Axiom 4. Suppose V satisfies all axioms except 4. By theorem 2, V must
 be a commutative additive group.

 (i) In lemmas 3, 4 and 5, and in theorem 7, we assume that Fis the rational
 field.

 LEMMA 3. Ifp is apositive integer, thenp(Aa) = (p x A)afor all A in F, alla in V.

 PROOF.

 p(Aa)= (1 + 1 + ... + 1) (2a) = 2a ( 2a O ... O ia
 -( + A + ... )a= (p x A)a.

 LEMMA 4. Ifp is a negative integer, or ifp = O, then p(Aa) = (p x A)a.

 PROOF. If p = 0 the result is trivial. If p is negative, write p =-p'. Then
 p(Pa) O p'(a) = (p + p') (ra) = 0(Aa) = Oa by axiom 5, = (p x + p' xX)a
 = (p x Z)a ( (p' x X)a = (p x X)a ? p'(Aa) by lemma 3. We know that V
 is an additive group by theorem 1: hence by the cancellation law
 p(ia) = (p x A)a.

 LEMMA 5. If q is a positive integer, then - (qa) = a for all a in V.
 q

 PROOF.

 1 1 1
 (qa) -[( + 1 + ... + 1)a] =(a a a ? ... ? a)

 1 1 1 /1\
 =-a O a ) ... -a ++...+- a=la=a.
 q q \q q q

 60

This content downloaded from 
������������193.140.158.90 on Thu, 16 Dec 2021 19:38:15 UTC������������� 

All use subject to https://about.jstor.org/terms



 AXIOMS FOR VECTOR SPACES

 THEOREM 7. A(ua) = (A x L)afor all A, p in F and all a in V; i.e., when Fis the
 field of rationals then axiom 4 is a consequence of the remaining axioms.

 PROOF. Write A = p/q, where p and q are integers, q positive. Then

 (a) =(p x - (pa) =p- (!La)) by lemma 3 or 4,

 p ( (q (a))) by lemma 3,

 =p (a) bylemma 5,

 =(p x })a by lemma 3 or 4,

 = (A x p)a.

 Next, if F is a field of prime order, then every element of F can be written
 in the form 1 + 1 + ... + 1, and we show as in the proof of lemma 3 that
 axiom 4 is a consequence of the other axioms.

 (ii) Next, suppose that Fis the field Q (A/2) of all real numbers of the form
 A + A'V2, where A and A' are rational. Let V* = Q (the rational numbers)
 and define a ( b = a + b, (A + A'V/2)a = A x a. Then /2(V/2(1)) = a/2(0)
 (writing V/2 in the form 0+ 1 /2)=0, but (/2 x V/2)(1)= 2(1) =2.
 Hence V* does not satisfy axiom 4. However, V* satisfies the other axioms,
 as we may easily check.

 This is the simplest case of counter-examples that always exist whenever
 F is not the rational field or a field of prime order. To show the existence
 in general of such counter-examples, the authors have had to use results
 about the decomposability of infinite groups ([2], pp. 122, 163).

 Conclusions. (i) If F is the field of two elements, then axioms 2 and 4
 are consequences of the other four independent axioms.

 (ii) If F is any other field of prime order, or if F is the rational field, then
 axiom 4 is a consequence of the other five independent axioms.

 (iii) If F is any other field, then the six axioms are independent.
 (iv) All four axioms 1, 3, 5 and 6 are necessary for the proof that V is an

 additive group.
 (v) All axioms except 4 are necessary for the proof that Vis a commutative

 additive group, unless F has characteristic 2, when axiom 2 is not necessary.
 (vi) If Fis a field of prime order, or ifFis the rational field, then, assuming

 axioms 1, 3,4,5 and 6, and also assuming that addition in Vis commutative,
 we can deduce axiom 2.

 (vii) We cannot replace axiom 5 by the axiom "V contains an additive
 neutral".
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 280. Disintegration

 A recent A-level script produced an attempt that, even after some 35
 years of examining, I found entirely new:

 dx dX I o
 Jx2 J 2 + 02 = Otan -1 ()"

 Salvage is interesting:

 [x dt kI 1 x\ =_ tan- (x - tan-1 -
 kt2 - \- g 2 8

 =- tan-t (xle)-(kl/)
 1 I + (Xk/?g)

 = uE, say.

 (Assume k > 0 for convenience.) Then

 eu~ = tan - 2 + xk k)

 so that

 tan(eu, ) e(x-k) 82 + xk
 or

 sin(eu,) (x - k) cos(eu,)
 2 + xk

 In the limit,

 x-k r- 1 1 u= - = - - - constant.
 uxk A LL

 Queens' College, Cambridge E. A. MAXWELL
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