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1 Introduction

It is well-known that the Colombeau algebra developed in 1984 contained the distribution spaces D′ and S ′ ([1], [2],
[3], [4]) and warded off the consequences of the Schwartz’s Impossibility Result and Stability Paradox in an optimal
manner, i.e. the concessions given were kept at a minimum. In return there was a well-defined rule of multiplication
for distributions. In a simplified version of the Colombeau algebra, the functional index set which is an essential
feature in Colombeau’s theory is avoided at the expense of non-existence of a privileged inclusion of D′ distributions.
However infinite number representatives are related within equivalence relations.

Since then various aspects, extensions and ramifications of the Colombeau’s theory have been investigated including
its random version , use in the solution of non-linear p.d.e. and relation to the non-standard analysis and ultra-
distributions, ([5], [6], [7], [8],[9], [10], [11], [12], [13], [14]).
However there have not been noticable attempts to construct associative, commutative algebras containing infinite
dimensional distributions with a possible exception of [15] where Hida distributions are imbedded into an algebra via
chaos expansions.

In Section 2 , inspired by the Colombeau a-extension proposed by Delcroix & Scarpalezos ([16]) we start by a d-
dimensional Gaussian space and construct an asymptotic, polynomial scale Colombeau extension Hs. We show that
the Meyer-Watanabe distributions D−∞ are included in the algebra Hs.
In Section 3 we consider a particular Gelfand triplet E ⊂ H ⊂ E∗ and the related Hida distribution. Using the
Gaussian measure µ on E∗ provided by the Minlos theorem we construct a parallel of the algebra Hs which also
contains the Hida distributions. Thus in Hs the product of Hida distributions is well-defined in comparison to the
indirect and somewhat artificial Wick product via the inverse S−transform.
After extending the results to the complex case in subsection 3.2, we give as an application, a new interpretation of
the Feynman integrand as a distribution in our sense in 3.3.

The present article is based on and the extension of the results taking place in unpublished talks given by the author
in international conferences [17], [ 18].
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2 Inclusion of Meyer-Watanabe Distributions

2.1 Basic Framework and Notation

Ω = C0([0, 1]) : The set of all Rd−valued continuous functions on [0, 1], null at zero with the sup norm.
µ : the Wiener measure on (Ω,B(Ω)).
For t ∈ [0, 1], ω ∈ Ω, ,Wt(ω)

.
= ω(t) is an Rd−valued Wiener functional and W (t, ω) is a d-dimensional Wiener

process.
Ft : t ∈ [0, 1] : the natural filtration generated by the process. F ≡ F∞ is the µ−completion of the sigma algebra
B(Ω), so that (Ω,F , µ) is our Wiener space.
H : the Cameron-Martin (C-M) space , is the Hilbert space formed by all h ∈ Ω such that each component of
(h(t) = (h1(t), h2(t), · · · , hd(t)) is absolutely continuous and has square integrable derivatives.
The inner product in H : for g, h ∈ H

(g, h)H =

∫ 1

0

d∑
1

ġi(t) ḣi(t) dt and the Hilbertian norm |h|2H =

∫ 1

0

|ḣ(t)|2dt (2.1.1)

An F-measurable fuction F : Ω→ R is a Wiener functional. Polynomial (resp. smooth) functionals are denoted by
P (resp.SM ) We have P ⊂ SM ⊂ Lp ≡ Lp(Ω,F , µ), also P is dense in Lp, (1 ≤ p <∞).
Ocassionally we use E-valued functionals F : Ω→ E , where E is a separable Hilbert space. In this case the symbols
are P(E) ⊂ SM (E) ⊂ Lp(E).
Dh denotes the perturbation of Wiener functionals in the direction of members of the C-M space, i.e. the weak

derivative defined by the well-known formula DhF (ω) = limλ→0
F (ω + λh)− F (ω)

h
; h ∈ H, F ∈ SM .

The gradient operator D is the closable operator from Lp into Lp(H) determined by

(DF, h)H = DhF ; DF ∈ SM (H) (2.1.2)

For E-valued functionals, the counterpart of (2.1.2) is

(DF, h⊗ e)H⊗E = lim
λ→0

1

λ
(F (ω + λh)− F (ω), e)E ; e ∈ E, DF ∈ SM (H ⊗ E) (2.1.3)

The chain rule for the gradients is

D(ϕ(F1, F2, · · ·Fn) =

n∑
j=1

∂jϕ(F1, F2, · · ·Fn)DFi (2.1.4)

where Fi ∈ SM , (i = 1, · · · , n) and ϕ is a tempered C∞-function on Rn , (in fact it suffices that ϕ is smooth ,
c.f. ([19], II, (2.26))
The Ornstein-Uhlenbeck operator is L = −δ D where δ is the divergence operator, i.e. the adjoint of D.
The norms defined on polynomial functionals: ∥F∥s,p = ∥(I −L)s/2F∥p, s ∈ R, 1 < p <∞ have the properties of
monotonicity and consistency. It is known that for s = k ∈ N

∥F∥k,p =

∥F∥pLp +

k∑
j=1

∥DjF∥pLp(µ;H⊗j)

 1
p

(2.1.5)

where DjF = D (Dj−1F ), ∈ SM (H⊗j), (the tensor products are symmetrized).
We denote by Dp

s , the Banach space which is the completion of SM with respect to the norm ∥ . ∥s,p and

D∞ =
∩
s>0

∩
1<p<∞

Dp
s , D−∞ =

∪
s>0

∪
1<p<∞

Dp
−s (2.1.6)

are Meyer-Watanabe testing functional space and its dual space (Meyer-Watanabe distributions) respectively.
D∞ is a complete countably normed space (Frechet space) and also a topological algebra. By the monotonicity of
∥ . ∥s,p norms we also have

D∞ =
∩
k∈N

∩
1<p<∞

Dp
k (2.1.7)
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Natural generalizations to E-valued functionals would be

D∞(E) =
∩
s>0

∩
1<p<∞

Dp
s(E), D−∞(E) =

∪
s>0

∪
1<p<∞

Dp
−s(E)

In many respects the pair (D∞, D−∞) behaves like (D, D′) of the Schwartz theory.

2.2 Construction of the Algebra Hs

Let χ be the set of all functions from (0, 1] into D∞. A member of χ will then be denoted by (fϵ)ϵ ∈ χ ≡ (D∞)(0,1].

Definition 2.2.1. (fϵ)ϵ ∈ χ is called moderate if given (k, p), k ∈ N, 1 < p < ∞, ∃N ∈ N such that
∥fϵ∥k,p = O(ϵ−N ) as ϵ→ 0.
The set of all moderate elements in χ is denoted by Ms = (Ω,F , µ;H).

Definition 2.2.2. (fϵ)ϵ ∈ χ is called negligible (or null), if given (k, p), k ∈ N, , 1 < p <∞, ∃N ∈ N such that

∥fϵ∥k,p = O(ϵm−N ), ∀m ≥ N as ϵ→ 0.
The set of all negligible members of χ is denoted by Js(Ω,F , µ;H).

Definition 2.2.3. Hs = Ms(Ω,F , µ;H)/Js(Ω,F , µ;H) will be called the Colombeau extension of D∞ , can
also be called the space of Wiener-Colombeau distributions).
(Note. The subindex ’s’ is the reminiscent of the word ’simplified’ . For D∞ being replaced by C∞(Ω); Ω ⊂ Rn

and ∥ . ∥k,p norms by single index semi-norms in terms of supremums of partial derivatives on increasing compacts
we retrieve the simplified Colombeau generalized functions, [16]).

Definition 2.2.4. Two members (fϵ)ϵ, (gϵ)ϵ of χ are said to be ϵ-equivalent if limϵ→0(fϵ − gϵ) = 0.

Definition 2.2.5. Two members (fϵ)ϵ, (gϵ)ϵ of χ are said to be law equivalent if they have the same probability
distribution.

Conclusions.
1. Ms is an algebra : Let (fϵ)ϵ, (gϵ)ϵ ∈Ms, define :
(fϵ)ϵ . (gϵ)ϵ

.
= (fϵ . gϵ)ϵ ∈ χ since D∞ ≡ D∞(R) is an algebra. Given (k, p), k ∈ N, 1 < p < ∞, ∃N1, N2 ∈

N, ∥fϵ∥k,p = O(ϵ−N1) and ∥gϵ∥k,p = O(ϵ−N2). Then ∥fϵ .gϵ∥[k,p = O(ϵ−N1−N2), hence (fϵ.gϵ)ϵ ∈Ms.

2. Js is an ideal in Ms : Let (fϵ)ϵ ∈ Js and (gϵ)ϵ ∈Ms. Given (k, p) as in 1. ∃N1, N2 ∈ N, ∥fϵ∥k,p = O(ϵm−N1)
∀m ≥ N1, ∥gϵ∥k,p = O(ϵ−N2). Then ∥fϵ . gϵ∥k,p = O(ϵm−N ) ∀m ≥ N, where N = N1 +N2.

3. Hs is a factor algebra. If F ∈ Hs, it is of the form (fϵ)ϵ + Js, (fϵ)ϵ ∈Ms.

4. By the monotonicity of the norms ∥ . ∥k,p , if the conditions in Definitions 2.2.1 and 2.2.2 hold for a certain pair
(k, p), then they also hold for all pairs in the cone {(k′, p′) : k′ ≤ k, p′ ≤ p}.

Inclusions.

A) D∞ ⊂Ms : If F ∈ D∞, then take (fϵ)ϵ = F for all ϵ ∈ (0, 1]. Thus D∞ is a faithful subalgebra of Hs.

B) D−∞ ⊂ Hs (inclusion of Meyer-Watanabe distributions)
Firstly consider the canonical Rd-valued functional W1(ω) ≡ ω(1), (ω ∈ Ω.) Then

DW1,i(t) = tei ∈ H, DhW1,i(ω) = hi(1) and thus W1(t) ∈ D∞(Rd); h ∈ H, t ∈ [0, 1] (2.2.1)

(e1, · · · , ed) is an orthonormal basis in Rd and (DW1,i, h)H = hi(1) = DhW1,i (2.2.2)

so that (2.1.2) is satisfied.
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Given T ∈ D−∞ we define the following functional in the convolution sense

fϕ
T,ϵ(ω) =

⟨
T (ω̃),

1

ϵd
ϕ

(
ω(1)− ω̃(1)

ϵ

)⟩
, ϵ ∈ (0, 1], ω, ω̃ ∈ Ω; ϕ ∈ D(Rd) (2.2.3)

(< . , . > denotes the bilinear form on D∞ × D−∞) and for fixed ϵ, ϕ

(
ω(1)− ω̃(1)

ϵ

)
∈ D∞.

We show that , fϕ
T,ϵ ∈ χ and also it is moderate :

Dhf
ϕ
T,ϵ(ω) = lim

λ→0

1

ϵd

⟨
T (ω̃, ϕ

(
ω(1) + λh(1)− ω̃(1)

ϵ

)
− ϕ

(
ω(1)− ω̃

ϵ

)⟩
(2.1.2)
=

1

ϵd

⟨
T (ω̃),

(
Dϕ(

ω(1)− ω̃(1)

ϵ
), h

)
H

⟩
(2.1.4),(2.2.1)

=
1

ϵd+1

⟨
T (ω̃),

(
d∑

i=1

∂iϕ(
ω(1)− ω̃(1)

ϵ
) tei, h

)
H

⟩

=
1

ϵd+1

⟨
T (ω̃),

d∑
i=1

∂iϕ(
ω(1)− ω̃(1)

ϵ
)

∫ 1

0

ḣi(s)ds

⟩
=

1

ϵd+1

∫ 1

0

d∑
i=1

⟨
T (ω̃, ∂i ϕ(

ω(1)− ω̃(1)

ϵ
)

⟩
ḣi(s)ds

=
1

ϵd+1

(
d∑

i=1

< T (ω̃), ∂iϕ(
ω(1)− ω̃(1)

ϵ
) > tei, h

)
H

.

Hence by (2.1.2)

Dfϕ
T,ϵ(ω) =

1

ϵd+1

d∑
i=1

⟨
T (ω̃), ∂i ϕ(

ω(1)− ω̃(1)

ϵ
)

⟩
tei ∈ Lp(H) , t ∈ (0, 1] (2.2.4)

(Note: (2.2.4) can be obtained informally from (2.2.3) by inserting the gradient in the right side of the bilinear form
< T (ω̃), . >, , however this operation is not in general legitimate since the gradient of the right side is H-valued,
thus does not belong to the domain of T ∈ D−∞).

For the second gradient we use (2.1.3) with E ←→ H and for any h̃ ∈ H, τ ∈ (0, 1]

(DhDfϕ
T,ϵ, h̃)H =

1

ϵd+2

 d∑
i=1

⟨
T (ω̃), (

d∑
j=1

∂2
i,jϕ(

ω(1)− ω̃(1)

ϵ
), τej , h)H

⟩
tei, h̃



=
1

ϵd+2

 d∑
i=1

⟨
T (ω̃),

d∑
j=1

∂2
i,jϕ(

ω(1)− ω̃(1)

ϵ
) (τej , h)H

⟩
tei, h̃


H

=
1

ϵd+2

d∑
i=1

⟨
T (ω̃)

d∑
j=1

∂2
i,j ϕ(

ω(1)− ω̃(1)

ϵ
) (τej , h)H

⟩
(tei, h̃)H

=
1

ϵd+2

d∑
i,j=1

⟨
T (ω̃), ∂2

i,jϕ(
ω(1)− ω̃(1)

ϵ

⟩
(τej , h)H (tei, h̃)H

=
1

ϵd+2

d∑
i,j=1

⟨
T (ω̃), ∂2

i,jϕ(
ω(1)− ω̃(1)

ϵ
)

⟩
(τej ⊗ tei, h⊗ h̃)H⊗H = (D2fϕ

T,ϵ, h⊗ h̃), thus

D2fϕ
T,ϵ(ω) =

1

ϵd+2

d∑
i,j=1

⟨
T (ω̃), ∂2

i,jϕ(
ω(1)− ω̃(2)

ϵ
)

⟩
τej ⊗ tei ∈ Lp(H ⊗H), τ ∈ (0, 1] (2.2.5)

By induction

Dkfϕ
T,ϵ =

1

d+ k

k∑
i1,i2,··· ,ik=1

⟨
T (ω̃), ∂i1,i2,··· ,ik ϕ(

ω(1)− ω̃(1)

ϵ
)

⟩
⊗k

r=1 treir ; tr ∈ (0, 1], (r = 1, · · · , k) (2.2.6)
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To verify the inductive hypothesis we should show by (2.1.3)

(Dk+1fϕ
T,ϵ , ⊗

k+1
j=1hj)H⊗k+1 = (Dhk+1

fϕ
T,ϵ, ⊗

k
j=1hj)H⊗k ; hj ∈ H, (j = 1, · · · , k + 1) (2.2.7)

(The r,h.s. of (2.2.7) with the abbreviated symbol ϕ( ))

1

ϵd+k+1

 d∑
i1,··· ,ik

< T (ω̃),

d∑
ik+1=1

(∂k+1
i1,··· ,ik+1

ϕ( ) tk+1 eik+1 , hk+1)H > ⊗k
r=1tr eir , ⊗

k
j=1hj


H⊗k

=
1

ϵd+k+1

d∑
i1,··· ,ik+1

< T (ω̃), ∂k+1
i1,··· ,ik+1

ϕ( ) > (tk+1eik+1 , hk+1)H (⊗k
r=1treir , ⊗

k
j=1hj )H⊗k

=
1

ϵd+k+1

 d∑
i1,··· ,ik+1

< T (ϵ̃), ∂i1,··· ,ik+1 ϕ( )⊗k+1
r=1 treir , ⊗

k+1
j=1hj


H⊗k+1

= l.h.s.

With an easy estimation we find that |Dkfϕ
T,ϵ|

p

H⊗k < ∞ so that Dk fϕ
T,ϵ ∈ Lp(H⊗k), k ∈ N/{0} Then referring to (2.1.5)

we have ∥fϕ
T,ϵ∥k,p < ∞ and as (k, p) are arbitrary , by (2.1.7) (fϕ

T,ϵ)ϵ ∈ χ, furthermore ∥fϕ
T,ϵ∥k,p = O(ϵ−k−d) hence

(fϕ
T,ϵ)ϵ ∈ Ms. Its class in Hs is a representative of T ∈ D−∞.

If ϕ∗ ∈ D(Rd) is another Schwartz test function, fϕ
T,ϵ and fϕ∗

T,ϵ are ϵ-equivalent :
Recall that in our set-up the Donsker’s delta function is given canonically by δx(ω(1)) [19] where δx is the Dirac delta

function at x ∈ Rd. Then lim
ϵ→0

(
fϕ
T,ϵ − fϕ∗

T,ϵ

)
=< T (ω̃), lim

ϵ→0

(
ϕ(
ω(1)− ω̃(1)

ϵ )− ϕ∗(
ω(1)− ω̃(1)

ϵ )

)
>=

< T (ω̃), δω̃(1) − δω̃(1) >= 0.

2.3 Sharp(uniform) Topology in Hs

D∞ is a countably normed space; for a strictly increasing set {pm}, (1 < pm < ∞, m = 1, 2, · · · ) of numbers D∞ =∩
k∈N

∩
Dpm

k (due to the monotonicity of ∥ . ∥k,p norms). Arrange the set of countable norms as

∥ . ∥1,p1 ; ∥ . ∥2,p1 , ∥ . ∥1,p2 ; ∥ . ∥3,p1 , ∥ . ∥2,p2 , ∥ . ∥1,p3 ; · · · · · · ; ∥ . ∥n,p1 , ∥ . ∥n−1,p2 , · · · · · · , ∥ . , ∥1,pn ; · · ·

Then we define a new set of countable norms µn, (n = 1, 2, · · · by

µn =

(
n∑

j=1

∥ . ∥2n+1−j,pj

)1/2

(2.3.1)

which are increasing ; also {µn}n∈N and {∥ . ∥k,p} norm systems are equivalent and create the same topology.
Furthermore (fϵ)ϵ ∈ Hs is moderate in {∥ . ∥k,p} norms ⇔ it is moderate in {µn} norms.

For (fϵ)ϵ ∈ Ms the n-valuation of f , denoted by vn(f) is supb∈Z{µn(fϵ) = O(ϵb)}. A family δn of ultrametric pseu-
distances on Ms is defined by δn(f, g) = exp(−vn(f − g)), ∀f, g ∈ Ms.

(fϵ)ϵ lies in Js ⇐⇒ ∀n ∈ N, vn(f) = +∞ (or equivalently ∀n ∈ N, δn(f, , 0) = 0).

These definitions transfer naturally to the quotient space Hs. Valuations and pseudo-distances have properties well-known in
analysis. The ultrametric uniform structure and the topology constructed are called sharp uniform structure and sharp topology
respectively.
Theorem. The space Hs is complete for the sharp uniform structure.
Proof. (Based on [12], prop. 1.31 and [15] , Thm 3.1). Let (Fn)n∈N be a Cauchy sequence in Hs and let (fϵ)ϵ (n ∈ N)
be a sequence of representatives in Ms. That means ∀n, δn(fr, fl) −→ 0 as r → ∞, l → 0. Considering the definition of
the valuations we can extract a subsequence (fqn,ϵ)ϵ ∈ Ms with strictly increasing sequence qn, n ∈ N of integers having
the following property :
∃ a decreasing sequence ϵk ↓ 0 (ϵk ≤ 1

2k
) such that

∀ϵ ∈ (0, ϵk] µk(fqk,ϵ − fqk−1,ϵ) < ϵk, (k ≥ 1) (2.3.2)

Define for k ∈ N/{0}

gk,ϵ =

{
fqk,ϵ − fqk−1,ϵ if ϵ ∈ (0, ϵk)
0 if ϵ ∈ [ϵk, 1]

(2.3.3)
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and finally define

fϵ
.
= fq0,ϵ +

∞∑
k=1

gk,ϵ (2.3.4)

fϵ is locally finite. For any n ∈ N/{0}

µn(fϵ) ≤ µn(fq0,ϵ) +

∞∑
k=1

µn(gk,ϵ) ≤ µn(fq0,ϵ) +

n−1∑
k=1

µn(gk,ϵ) +

∞∑
k=n

µk(gk,ϵ)

≤ µn(fq0,ϵ) +

n−1∑
k=1

µn(gk,ϵ) +
ϵn

1− ϵ

(since µn is increasing and by (2.3.2)). thus (fϵ)ϵ ∈ Ms

As fϵ = fq0,ϵ + fq1,ϵ − fq0,ϵ + · · · · · ·+ fqm−1,ϵ − fqm−2,ϵ + fqm,ϵ − fqm−1,ϵ + · · ·

We have by cancellations and for any m ≥ 1

fϵ − fqm,ϵ =

∞∑
k=m

gk+1,ϵ ; µm(fϵ − fqm,ϵ) = µm(

∞∑
k=m

gk+1,ϵ) ≤
∞∑

k=m

µk+1(gk+1,ϵ) ≤
ϵm+1

1− ϵ
, (ϵ ∈ (0, ϵm))

This shows that the subsequence (fqn) converges to (fϵ)ϵ ∈ Ms in sharp topology.
Thus the subsequence (Fqn) converges to F ∈ Hs, (Fqn and F are the classes of (fqn,ϵ)ϵ and (fϵ)ϵ in Hs respectively).
As (Fn)n∈N is Cauchy with a convergent subsequence it converges to F . �
Note. Hs is also a C̄ topological module, C̄ being the ring of generalized complex numbers. But this result is not needed
in the sequel.

3 Inclusion of Hida Distributions

3.1 Real Case

We consider the Gelfand triplet E ⊂ H ⊂ E∗ ; H is a real separable Hilbert space , E is a countably Hilbert nuclear space
which is densely and continuously imbedded in H and E∗ is the dual of E.
By Minlos theorem there is a unique Gaussian measure µ on (E∗,B(E∗)). Thus (E∗,B(E∗), µ;H) forms a canonical
Gaussian probability space. We denote the inner product and norm in H( or (H⊗n) by ( . , . ) and | . | respectively. L2(E∗, µ)
is abbreviated by (L2).
Using the second quantization operator we construct the Hida testing functional space (E) and its dual (E)∗ , the Hida
distributions.
On the other hand the Meyer-Watanabe functional space D∞ and the distribution space D−∞ can also be constructed on
(E∗,B(E∗), µ) as well, the C-M space being replaced by H.
The starting point of the weak differential calculus will be then

(DF, h)H = lim
λ→0

F (x+ λh)− F (x)

λ
, x ∈ E∗, h ∈ H (3.1.1)

For f ∈ E , consider the functional Wf , defined by

Wf (x)
.
=< x, f >, (< . , . > denotes the bilinear form on E∗ × E or on E × E∗) (3.1.2)

By Minlos’ theorem
∫
E∗ e

i<x,f> dµ(x) = e−
1
2
|f |2 , hence Wf is a Gaussian random variable on E∗.

The linear map f −→Wf : E −→ L2(E∗, µ) can be extended to a linear isometry from H into L2(E∗, µ). Now

(DWf , h)H = lim
λ→0

< f, x+ λh > − < f, x >

λ
=< f, h >= (f, h)H yielding DWf = f ∈ E ⊂ H (3.1.3)

It is known that for (D∞, D−∞) constructed on (E∗,B(E∗), µ) we have (E) ⊂ D∞ and D−∞ ⊂ (E)∗ both inclusions
being dense. For T ∈ (E)∗ the counterpart of (2.2.3) will be (d = 1)

gϕ,fT,ϵ (x) =
1

ϵ
<< T (x̃), ϕ

(
Wf (x)−Wf (x̃)

ϵ

)
>> ;x, x̃ ∈ E∗, ϕ ∈ D(R), |f |H = 1 (3.1.4)

where << . , . >> is the canonical bilinear form on ((E)∗, (E)).

6



Polynomial functionals in the variables {Wfj}(j = 1, 2, · · ·n) belong to D∞ ∩ (E) and are dense in both of them. The
right member of << . , . >> in (3.1.4) can be regarded as the limit of Taylor polynomials in Wf and is in (E) due to its
completeness as a countably Hilbertian nuclear space (in fact a smooth functional).
We show that (gϕ,fT,ϵ )ϵ ∈ χ and that it is also moderate. We have :

(Dgϵ, h)H =
1

ϵ
<< T (x̃),

(
Dϕ

(
Wf (x)−Wf (x̃)

ϵ

)
, h

)
H

>>=
1

ϵ2
<< T (x̃),

(
ϕ′
(
Wf (x)−Wf (x̃)

ϵ

)
f, h

)
H

>>

=
1

ϵ2
<< T (x̃), ϕ′

(
Wf (x)−Wf (x̃)

ϵ

)
>> (f, h)H =

1

ϵ2

(
<< T (x̃), ϕ′

(
Wf (x)−Wf (x̃)

ϵ

)
>> f, h

)
H

which yields Dgϵ =
1
ϵ2
<< T (x̃),

(
ϕ′(

Wf (x)−Wf (x̃)
ϵ

)
f >> .

For higher order gradients we again use (2.1.3), in some abbreviated notation :

(DhDgϵ, h̃)H =
1

ϵ3

(
<< T (x̃), (ϕ

′′
( ) f, h)H >> f, h̃

)
H

=
1

ϵ3

(
<< T (x̃), ϕ

′′
( ) (f, h)H >> f, h̃

)
H

=
1

ϵ3
<< T (x̃), ϕ

′′
( ) >> (f, h)H (f, h̃)H =

1

ϵ3
<< T (x̃, ϕ

′′
( ) >> (f ⊗ f), h⊗ h̃ )H⊗H

=
1

ϵ3

(
<< T (x̃), ϕ

′′
( ) >> (f ⊗ f, h⊗ h̃

)
H⊗H

= (D2gϵ, h⊗ h̃)H⊗H

giving D2gϕ,fT,ϵ (x) =
1
ϵ3

<< T (x̃), , ϕ
′′
(
Wf (x)−Wf (x̃)

ϵ

)
>> (f ⊗ f).

By an induction similar to the one in Section 2.2 :

Dkgϕ,fT,ϵ (x) =
1

ϵk+1
<< T (x̃), ϕ(k)

(
Wf (x)−Wf (x̃)

ϵ

)
>> f⊗k =

1

ϵk+1
<< T (x̃), ϕ(k)

(
< x, f > − < x̃, f >

ϵ

)
>> f⊗k

(3.1.5)
As clearly |Dkgϕ,fT,ϵ |

p

H⊗k < ∞, we have Dkgϕ,fT,ϵ ∈ Lp(H⊗k). so that by (2.1.5) (gϕ,fT,ϵ )ϵ ∈ χ and furthermore (gϕ,fT,ϵ )ϵ ∈
Ms as ∥gϕ,fT,ϵ ∥k,p = O(ϵ−k−1), hence (E)∗ ∈ Hs.

Different representatives obtained by ϕ̃ ∈ D(R) and/or by f̃ ∈ E, |f̃ |H = 1, are either ϵ-equivalent or law equivalent or a
combination of them according to Definitions 2.2.4, 2.2.5.

3.2 Complex case

For any topological vector space K on R, denote by VC its complexification, i.e. VC = V + i V .
If V is a Hilbert space and u1 + i v1 and u2 + i v2, are in VC, then their inner product is , (u1 + iv1, u2 + iv2)VC =
(u1, u2) + (v1, v2) + i[(u2, v1)− (u1, v2)] thus |u1 + iv1|2VC = |u1|2V + |v1|2V .
Let χC be the set of all functions (0, 1] −→ D∞

C = D∞ + iD∞. Definitions 2.2.1 to 2.2.5 are modified accordingly to define
HC,s , ϵ− and law equivalence.
HC,s is also an algebra. We consider complex-valued functionals on the measure space (E∗,B(E∗), µ). Letting EC ∋ f, f =
f1 + if2, (fj ∈ E, j = 1.2)
For x ∈ E∗, Wf =< x, f1 + if2 >=< x, f1 > +i < x, f2 > .

The real and imaginary parts of Wf are independent Gaussian random variables with characteristic functions e−
1
2
|fj |2 , (j =

1, 2). If we take |f1|2 = |f2|2 = 1/2, then Wf ∈ CN(0, 1), i.e. a standard complex-valued Gaussian random variable.
The linear map f →Wf from EC to L2

C(E
∗, µ) = (L2)C can be extended to a linear isometry HC → (L2)C.

Consider the formal composition δ(Wf (x) −Wf (x̃)), x, x̃ ∈ E∗, where δ is the Dirac delta function. Using the linearity of
Dirac delta it takes the form δ(< x, f1 > − < x̃, f1 >)+ i δ(< x, f2 > − < x̃, f2 >). This can be approximateed by the delta
nets as

1
ϵ ϕ
(
< x, f1 > − < x̃, f1 >

ϵ

)
+ i 1ϵ ϕ

(
< x, f2 > − < x̃, f2 >

ϵ

)
, ϕ ∈ D(R) (†)

Its limit can be regarded as a complex linear combination of two functions of so-called Donsker’s type, (see also the next
section ). Let T ∈ (E)∗C, based on (†) define

Θϕ,f
T,ϵ (x) =

1

ϵ
<< T (x̃), ϕ

(
< x, f1 > − < x̃, f1 >

ϵ

)
+ i ϕ

(
< x, f2 > − < x̃f2 >

ϵ

)
>>, f = f1 + i f2, x, x̃ ∈ E∗ (3.2.1)
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where << . , . >> is the canonical conjugate bilinear form on (E)∗C × (EC). The use of two tests functions ϕ will not bring
in an essential difference.
The real and imaginary parts of the right side of << . , . >> are both in (E) according to Section 3.1. Therefore the right
side belongs to (E)C . (For a complete characterization of (E)C and (E)∗C in terms of S-transforms and Uβ functionals , c.f
[19] and [21]).

The calculation of the gradients of the functional (3.2.1) is basically the same as in the previous section except obvious
modifications for the complex case. Thus

DΘϕ,f
T,ϵ (x) =

1

ϵ2
<< T (x̃), ϕ′

(
< x, f1 > − < x̃, f1 >

ϵ

)
>> f1 + i

1

ϵ2
<< T (x̃), ϕ′

(
< x, f2 > − < x̃, f2 >

ϵ

)
>> f2

(3.2.2)
and

DkΘϕ,f
T,ϵ (x) =

1

ϵk+1
<< T (x̃), ϕ(k)

(
< x, f1 > − < x̃, f1 >

ϵ

)
>> f⊗k

1

+ i
1

ϵk+1
<< T (x̃), ϕ(k)

(
< x, f2 > − < x̃, f2 >

ϵ

)
>> f⊗k

2 (3.2.3)

In parallel to the evaluations of Section 3.1, the ∥ . ∥k,p norms of the real and imaginary parts of the right-hand sides in this
expression are finite. This then shows that for arbitrary k ∈ N and 1 < p < ∞ we have ∥Θϕ,f

T,ϵ∥k,p < ∞. Thus Θϕ,f
T,ϵ ∈ χC

and it is also moderate and represents T ∈ (E)∗C in HC,s. In this way (E)∗C ⊂ HC,s.

3.3 Application to the Feynman Integrand.

Recall that Donsker’s delta function in white noise theory set-up is given by δa(Wf ) ≡ δ(Wf − a)
;Wf (x) =< x, f >, x ∈ E∗, f ∈ E, a ∈ R.
It is shown to be a Hida distribution, therefore included in Hs with a representative R(x) = 1

ϵ ϕ(
Wf (x)− a

ϵ ), ϕ ∈ D(R). As
in section 3.1 we obtain

DR(x) =
1

ϵ2
ϕ′(

< f, x > −a
ϵ

) f, · · · , DkR(x) =
1

ϵk+1
ϕ(k)(

< f, x > −a
ϵ

) f⊗k (3.3.1)

The other representatives are ϵ-equivalent.
δ(Bt), where Bt is the standard Brownian motion starting from 0 is also a Donsker’s delta function. In the representative we
may select |f | = 1, f ∈ E and use W√

tf .

Ef = exp{Wf − 1
2
< f, f >} is the exponential functional and for f ∈ EC it is known to be in (E)C.

For all f ∈ E, and λ > 0, G(f) =
∫
E∗ Ef µ

(λ)(dx) = exp{λ2−1
2

|f |2} is shown to be the S-transform of a Hida distribution
F (λ) = S−1G, [19] .
For λ ∈ C, G(f) is still the S-transform of some element F ∈ (E)∗C, i.e. F (λ) = S−1G .
The following short review is from [19] , [22] :
(In this section the initial Gelfand triplet of Section 3.1 can be taken as S(Rd) ⊂ L2(Rd) ⊂ S∗(Rd) where S∗(Rd) denotes
the set of tempered distributions ).
The Schrödinger equation

∂Ψ

∂t
= i (

∆

2
− V )Ψ; Ψ(0, x) = f(x) (3.3.2)

where ∆ is the Laplace operator in Rd, V is a real Borel function on Rd, (the potential). From the point of white-noise
analysis it is preferable to start with the heat equation

∂u

∂t
= (

λ

2
∆− i V )u ;u(0, x) = f(x), where λ > 0 (3.3.3)

The solution of (3.3.3) is given by the Feynman-Kac formula as

u(t, x) = E
[
f(

√
λBt + x) exp−i

∫ t

0

V (
√
λs+ xds

]
(3.3.4)

where Bt is the standard Brownian motion starting from 0. In term of the Hida distribution F (
√
λ) this can be rewritten as

u(t, x) =<< F (
√
λ) f(Bt + x) exp−i

∫ t

0

V (Bs + x)dx, 1 >> (3.3.5)
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Let f(x) = δy(x). Then by (3.3.4) the fundamental solution of (3.3.3) is obtained as

uλ(t, x, y) =<< F (
√
λ) δ(Bt − y + z) exp−i

∫ t

0

V (Bs + x)dx, 1 >> (3.3.6)

Suppose uλ has an analytic continuation in λ, (the conditions for validity of this analytic continuation are given at Corollary
4.4 [23] ), then the fundamental solution of (3.3.2) can be asserted to be

Ψλ(t, x, y) =<< F (
√
i) δ(Bt − y + x) e−i

∫ t
0 V (Bs+x)ds, 1 >>; F (

√
i) ∈ (E)∗C (3.3.7)

The two factors F (
√
i) and δ(Bt − y + z) are in Hs by Section 3.2 and the paragraphs above. Therefore it remains to

discuss the meaning of the exponential factor. V (Bs + x) is expressed via a Bochner integral as

V (Bs + x) =

∫
Rd

V (x) δ(Bs + x− z) dz (3.3.8)

For ∆n = {(t1, · · · , tn) : 0 < t1 < · · · < tn < t}

exp{−i
∫ t

0

V (Bs + x) ds} =

∞∑
n=0

(−i)n
∫
∆n

n∏
j=1

V (Btj + x) dnt

=

∞∑
n=0

(−i)n
∫
∆n

dtn
n∏

j=1

∫
Rd

V (zj) δ(Btj + x− zj) dzj (3.3.9)

so that the full Feynman integrand for the propagator becomes

∞∑
n=0

(−i)n
∫
∆n

dnt

a∏
j=1

ren

∫
Rd

V (zj) δ(Btj + x− zj) dzj F (
√
i)δ(Bt − y + x) =

∞∑
n=0

(−i)n
∫
∆n

dnt

n∏
j=1

∫
Rd

V (zj)dzj

×F (
√
i) δ(Bt − y + x)

n∏
j=1

δ(Btj + x− zj) (3.3.10)

In [22], [23], [24 ]considerable effort is spent to give a reasonable meaning to the factor F (
√
i) δ( )

∏
as a Hida distribution.

But obviously this factor is in algebra Hs,C. furthermore in [21] it is shown that under the assumptions that d = 1, and
V (y)dy is a compactly supported signed measure, the product of the three terms in the right-hand side of (3.3.5) is a Hida
distribution. To perform the ti-integrations in (3.3.9) and the convergence of the series in the first factor of (3.3.9) the

assumption d = 1 is essential. For in the evaluation the integral Mn =
∫
∆n

dnt
∏

|ti − ti−1|−
d
2 is needed and it exists only

for d = 1. In this case Mn rapidly decreases and
∑∞

n=1Mn <∞.
However in our case when d = 1 , without needing the introduction of ∆n and the elaborate evaluations of (3.3.8) and
(3.3.9), we can show the following:
Theorem. If d = 1 and V (z) dz is a bounded signed measure, then the product of three terms in (3.3.6) is in Hs,C.

Proof. Firstly let us show that V (Bs+x) =
∫
R V (z) δ(Bs+x−z) dz given by (3.3.7) is in Hs . It will have a representative

Γϕ,f
ϵ (ψ) =

1

ϵ

∫
R
V (z) ϕ

(
(W√

sf (ψ)− (z − x)

ϵ

)
dz, f ∈ E, |f | = 1, ϕ ∈ D(R), ψ ∈ E∗ (3.3.11)

By bounded convergence theorem the operators Dh and D, can be inserted into the integral and an approach parallel to
those in sections 2.2 and 3.1 yields

DΓϕ,f
ϵ (ψ) =

1

ϵ2
[

∫
R
ϕ′
(√

s < ψ, x > −(z − x)

ϵ

)√
s V (z) dz] f

and

DkΓϕ,f
ϵ (ψ) =

1

ϵx+1
[

∫
R
ϕ(k)

(√
s < ψ, f > −(z − x)

ϵ

)
sk/2 V (z)dz] f⊗k (3.3.12)

|DkΓϕ,f
ϵ |p

H⊗k =
1

ϵk+1
|
∫
supp ϕ(k)

ϕ(k)

(√
s < ψ, f > −(z − x)

ϵ

)
sk/2V (z)dz|p <∞ (3.3.13)

since |f⊗k|H⊗k = 1. As V (z)dz = V (z)+dz−V (z)−dz is a bounded signed measure (3.3.12) shows that ∥DkΓϕ,f
ϵ ∥Lp(µ;H⊗k ) <

∞ As k ∈ N and 1 < p < ∞ are arbitrary it follows from (2.1.5) that Γϕ,f
ϵ ∈ D∞, (0 < ϵ < 1), furthermore

∥Γϕ,f
ϵ ∥k,p = O(ϵ−k−1) hence (Γϕ,f

ϵ )ϵ ∈ Ms, then its class in Hs represents V (Bs + x).

∫ t

0
V (Bs + x) ds regarded as the limit of finite sums over the partitions of [0, 1] is in Hs due to its completion.

Now e−i
∫ t
0 V (Bs+x) ds = cos

∫ t

0
V (Bs + x)ds− i sin

∫ t

0
V (Bs + x), and as a complex linear combination of smooth, bounded

functions of members of Ms, (2.1.4) this expression is included in Ms,C. Its class in Hs,C represents e−i
∫ t
0 V (Bs+x)ds. As

a consequence each factor of the product in (3.3.6) is in Hs,C , so is their product. �
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Concluding Remarks.
1) Present approach may have potentiality in studying the generalized solutions of non-linear stochastic partial differential
equations as in [11].
2) In this paper non-linearities of polynomial order of 1/ϵ was considered. For non-linearities growing faster than polynomial
order (e.g. of exponential order) an asympotic scale an(ϵ) accompanied by a set of postulates can be introduced, (c.f. [16]).
In our case an(ϵ) = ϵn.
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