<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class=""> <div class="">Bilkent Topoloji Semineri duyurusu. İlgilenenleri bekleriz.</div><div class=""><br class=""></div><div class="">Ergün</div><div class=""><br class=""></div><div class=""><br class=""></div><div class=""><br class=""></div><div class=""><br class=""><div class=""><div><blockquote type="cite" class=""><br class=""><div class=""><div dir="ltr" class="">Dear all,<br class=""><br class="">Here is the information for our next topology seminar:<br class=""><br class="">Join Zoom Meeting<br class=""><a href="https://zoom.us/j/94366555204?pwd=cjg5K2szbXlmaGVKc0RrUjN5aEhkUT09" class="">https://zoom.us/j/94366555204?pwd=cjg5K2szbXlmaGVKc0RrUjN5aEhkUT09</a><br class=""><br class="">Meeting ID: 943 6655 5204<br class="">Passcode: 715677<br class=""><br class="">-------<br class=""><br class="">Time: Mar 14, 2022 @ 13:30 UTC+3<br class="">Speaker: Henry Adams (Colorado State University)<br class=""><br class="">Title: An introduction to Vietoris-Rips complexes<br class=""><br class="">Abstract: I will give an introduction to Vietoris-Rips complexes and their uses in applied and computational topology. If a dataset is sampled from some unknown underlying space (say a manifold), then as more and more samples are drawn, the Vietoris-Rips persistent homology of the dataset converges to the Vietoris-Rips persistent homology of the manifold. But little is known about Vietoris-Rips complexes of manifolds. An exception is the case of the circle: I will describe how as the scale parameter increases, the Vietoris-Rips complexes of the circle obtain the homotopy types of the circle, the 3-sphere, the 5-sphere, ..., until finally they are contractible. Much less is known about Vietoris-Rips complexes of spheres. I will also briefly explain how Vietoris-Rips complexes relate to generalizations of the Borsuk-Ulam theorem and to Gromov-Hausdorff distances between spheres.<br class=""><br class=""><br class="">--------<br class=""><br class="">To see the upcoming talks visit: <a href="https://researchseminars.org/seminar/BilTop" class="">https://researchseminars.org/seminar/BilTop</a><br class=""> <br class=""><br class="">Best,<br class="">Cihan Okay<br class=""><br class=""><a href="http://cihan.okay.bilkent.edu.tr/" class="">http://cihan.okay.bilkent.edu.tr/</a><br class=""></div>
</div></blockquote></div><br class=""></div></div></body></html>