<div dir="ltr">Dear all, <div><br></div><div>This is to invite you to our upcoming SCIM talk. The talk, </div><div>as usual, will be accessible via zoom for online participation. </div><div><br></div><div>You may find the details of the talk below.<span class="gmail-Apple-converted-space"> </span><br></div><div>For further details and registration (required if you plan to attend<span class="gmail-Apple-converted-space"> </span><br>in person) please check<span class="gmail-Apple-converted-space"> </span><a href="https://alcyon-lab.gitlab.io/lab/scim.html" target="_blank">https://alcyon-lab.gitlab.io/lab/<span class="gmail-il">scim</span>.html</a>.<span class="gmail-Apple-converted-space"> </span><br></div><div><span class="gmail-Apple-converted-space"><br></span></div><div><span class="gmail-Apple-converted-space"><br></span></div><div><span class="gmail-Apple-converted-space"><b>Speaker:</b> Emrah Sercan Yılmaz (Atılım University)</span></div><div><span class="gmail-Apple-converted-space"><b>Time:</b><span class="gmail-Apple-converted-space"> </span>March 18, 2022; 17:00 (Istanbul)<br><b>Place:</b><span class="gmail-Apple-converted-space"> </span>Istanbul Matematiksel Bilimler Merkezi & Zoom<br><br><b>Title:</b><span class="gmail-Apple-converted-space"> </span>Divisibility of L-Polynomials for a Family of Artin-Schreier Curves<br><br><b>Abstract:</b><span class="gmail-Apple-converted-space"> </span>In this talk we consider the curves $C_k^{(p,a)}: y^p-y = x^{p^k+1} + ax$ </span></div><div><span class="gmail-Apple-converted-space">defined over $\mathbb F_p$ and give a positive answer to a conjecture about </span></div><div><span class="gmail-Apple-converted-space">a divisibility condition on $L$-polynomials of the curves $C_k^{(p,a)}$. </span></div><div><span class="gmail-Apple-converted-space">Our proof involves finding an exact formula for the number of </span></div><div><span class="gmail-Apple-converted-space">$\mathbb F_{p^n}$-rational points on $C_k^{(p,a)}$ for all $n$, and uses a result </span></div><div><span class="gmail-Apple-converted-space">we proved elsewhere about the number of rational points on supersingular curves.</span></div><div><br><span class="gmail-Apple-converted-space"><div>--------------------------------------------------------------------------------------------------</div><div><br><b>Zoom link:<span class="gmail-Apple-converted-space"> </span></b><br><a href="https://sfu.zoom.us/j/64536080348?pwd=cGZURkY2TDVBaXM5VW1JWTZXOHVyQT09" target="_blank">https://sfu.zoom.us/j/64536080348?pwd=cGZURkY2TDVBaXM5VW1JWTZXOHVyQT09</a><br><br><b>Meeting ID:</b><span class="gmail-Apple-converted-space"> </span>645 3608 0348<br><b>Password:</b><span class="gmail-Apple-converted-space"> </span>scimtalk</div></span></div><div><br></div><div>Best wishes, </div><div>Türkü</div><div><br></div></div>