<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class=""><div><br class=""></div><div>Bilkent Topoloji Semineri önümüzdeki hafta Pazartesi günü</div><div>13:30’da Matematik Bölümü Seminer odasında yüz yüze olacak.</div><div>Konuşmacımız Fransa’dan, PARIS 13’den emekli matematikçi </div><div>Bob Oliver. Konuşma başlığı ve özeti aşağıda. Bob Oliver </div><div>Bilkent’te on gün misafirimiz olacak. İlgilenen herkesi konuşmasına </div><div>ve sonrasında kampüste kendisiyle sohbet etmeye bekleriz.</div><div><br class=""></div><div>Herkese iyi hafta sonları dilerim.</div><div>Ergün</div><div><br class=""></div><div><br class=""></div><div><br class=""><blockquote type="cite" class=""><div class=""><div dir="ltr" class=""><br class="">Dear all,<br class=""><br class="">This week's seminar will be face-to-face in the Mathematics Seminar Room. <br class=""><br class="">-------<br class=""><br class="">Speaker: Bob Oliver (Université PARIS 13)<div class=""><br class="">Title: A Krull-Remak-Schmidt theorem for fusion systems<br class=""><br class=""><br class="">Abstract: The Krull-Remak-Schmidt theorem, when restricted to finite groups, implies <br class="">that every finite group factorizes as a product of indecomposable subgroups <br class="">which are unique up to isomorphism. But the theorem actually says much <br class="">more. For example, as a special case, it implies that this factorization is <br class="">unique (not only up to isomorphism) whenever the group is perfect or <br class="">has trivial center. This is important, for example, when describing the <br class="">automorphisms of the group in terms of the automorphisms of its <br class="">indecomposable factors.<br class=""><br class="">A similar factorization theorem is true for fusion systems over finite <br class="">$p$-groups (in fact, for fusion systems over discrete $p$-toral groups). In <br class="">this talk, I plan to begin by discussing the original theorem for groups <br class="">and sketching its proof, and then, after a brief introduction to fusion <br class="">systems, describe how these ideas can be carried over <br class="">to prove the corresponding result in that setting.<br class=""><br class=""><br class="">--------<br class=""><br class="">To see the upcoming talks visit: <a href="https://researchseminars.org/seminar/BilTop" class="">https://researchseminars.org/seminar/BilTop</a><br class=""> <br class=""><br class="">Best,<br class="">Cihan Okay<br class=""><br class=""><a href="http://cihan.okay.bilkent.edu.tr/" class="">http://cihan.okay.bilkent.edu.tr/</a><br class=""></div></div>
</div></blockquote></div><br class=""></body></html>