<div dir="ltr"><div dir="ltr">Dear all,<span class="gmail-Apple-converted-space"> </span><br><br>This is to invite you to our upcoming SCIM talk.<span class="gmail-Apple-converted-space"> </span><br>The talk will be accessible also via zoom for online participation.<span class="gmail-Apple-converted-space"> </span><br><br>You may find the details of the talk below.<span class="gmail-Apple-converted-space"> </span><br>For further details and registration (required if you plan to attend in person) <div>please check<span class="gmail-Apple-converted-space"> </span><a href="https://alcyon-lab.gitlab.io/lab/scim.html" target="_blank">https://alcyon-lab.gitlab.io/lab/scim.html</a>. </div><div><br><b>Speaker:</b><span class="gmail-Apple-converted-space"> </span>Oğuz Yayla (Institute of Applied Mathematics, METU) <br><b>Time:</b><span class="gmail-Apple-converted-space"> </span>April 15, 2022; 17:00 (Istanbul)<br><b>Place:</b><span class="gmail-Apple-converted-space"> </span>Istanbul Matematiksel Bilimler Merkezi & Zoom<br><br><b>Title:</b><span class="gmail-Apple-converted-space"> The number of irreducible polynomials over finite fields with prescribed coefficients</span></div><div><b>Abstract: </b>In this talk, the formula for the number of monic irreducible polynomials <br></div><div>of degree n over the finite field is discussed. We will review the existing results </div><div>and the importance of the problem. Then, we will give recent results for the </div><div>case where the coefficients of x^{n-1} and x vanish. In particular, we give a </div><div>relation between rational points of algebraic curves over finite fields and the </div><div>number of elements "a" in the n-th extension of the finite field for which <div>Trace(a)=0 and Trace(a^{-1})=0. Finally, we will show the application of the </div><div>problem to give an upper bound on the number of distinct constructions of a family </div><div>of sequences with good family complexity and cross-correlation measure.</div></div><div><br></div><div>--------------------------------------------------------------------------------------------------<br><br>Zoom link:<span class="gmail-Apple-converted-space"> </span><br><a href="https://sfu.zoom.us/j/64536080348?pwd=cGZURkY2TDVBaXM5VW1JWTZXOHVyQT09" target="_blank">https://sfu.zoom.us/j/64536080348?pwd=cGZURkY2TDVBaXM5VW1JWTZXOHVyQT09</a><br><br>Meeting ID: 645 3608 0348<br>Password: scimtalk<br><br>Best wishes, </div><div>Türkü</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Thu, Apr 14, 2022 at 10:19 AM Türkü Özlüm Çelik <<a href="mailto:turkuozlum@gmail.com">turkuozlum@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr">Dear all, <br><br>This is to invite you to our upcoming SCIM talk. <br>The talk will be accessible also via zoom for online participation. <br><br>You may find the details of the talk below. <br>For further details and registration (required if you plan to attend in person) <div>please check <a href="https://alcyon-lab.gitlab.io/lab/scim.html" target="_blank">https://alcyon-lab.gitlab.io/lab/scim.html</a>. </div><div>Please see the attached file for the IMBM poster. <br><br><b>Speaker:</b> Oğuz Yayla (Hacettepe University)<br><b>Time:</b> April 15, 2022; 17:00 (Istanbul)<br><b>Place:</b> Istanbul Matematiksel Bilimler Merkezi & Zoom<br><br><b>Title:</b> In this talk, the formula for the number of monic irreducible polynomials </div><div>of degree n over the finite field is discussed. We will review the existing results </div><div>and the importance of the problem. Then, we will give recent results for the </div><div>case where the coefficients of x^{n-1} and x vanish. In particular, we give a </div><div>relation between rational points of algebraic curves over finite fields and the </div><div>number of elements "a" in the n-th extension of the finite field for which <div>Trace(a)=0 and Trace(a^{-1})=0. Finally, we will show the application of the </div><div>problem to give an upper bound on the number of distinct constructions of a family </div><div>of sequences with good family complexity and cross-correlation measure.</div></div><div><br></div><div>--------------------------------------------------------------------------------------------------<br><br>Zoom link: <br><a href="https://sfu.zoom.us/j/64536080348?pwd=cGZURkY2TDVBaXM5VW1JWTZXOHVyQT09" target="_blank">https://sfu.zoom.us/j/64536080348?pwd=cGZURkY2TDVBaXM5VW1JWTZXOHVyQT09</a><br><br>Meeting ID: 645 3608 0348<br>Password: scimtalk<br><br>Best wishes, <br></div><div>Türkü</div></div>
</blockquote></div></div>