<html>
  <head>
    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <div dir="ltr"><br>
      <div lang="x-unicode">
        <div align="center"><big><b><big>ODTU-Bilkent Algebraic Geometry
                Seminar</big></b></big><b><br>
          </b></div>
        <div align="center"><i><br>
          </i></div>
        <div align="center"><b><font color="#8000ff"><font size="4">NEW
                ABSTRACT</font></font></b></div>
        <div align="center"><br>
        </div>
        <div align="center"><b><b>Our speaker has provided a new
              abstract for this week's talk. The new abstract can be
              found below and also on<br>
              <a moz-do-not-send="true"
                href="http://sertoz.bilkent.edu.tr/agseminar.htm">the
                seminar web page.</a><br>
            </b></b></div>
        <div align="center"><br>
          <br>
          <div align="left"><b><b><font color="#ff0000">Speaker:<font
                    color="#000000"> Emre Coşkun<br>
                  </font></font></b></b><b><b><font color="#ff0000">Affiliation:
                  <font color="#000000"><i>ODTÜ</i></font></font></b></b><b><b><font
                  color="#ff0000"><br>
                  Title:<font color="#000000"> McKay correspondence II<br>
                     </font><br>
                </font></b></b></div>
        </div>
        <div align="left"><b><b><font color="#ff0000">Abstract:</font></b></b><font
            color="#ff0000"><font color="#000000"> </font></font><br>
          <font color="#ff0000"><font color="#000000"><font
                color="#ff0000"><font color="#000000">Let<span> </span><span><span
                      style="font-style: italic;">G ⊂ SU(2)​</span>​</span><span> </span>be
                  a finite subgroup containing<span> </span><span><span
                      style="font-style: italic;">-I​</span>​</span>,
                  and let<span> </span><span><span style="font-style:
                      italic;">Q​</span>​</span><span> </span>be the
                  corresponding Euclidean graph. Given an orientation on<span> </span><span><span
                      style="font-style: italic;">Q​</span>​</span>, one
                  can define the (bounded) derived category of the
                  representations of the resulting quiver. Let<span> </span><span><span
                      style="font-style: italic;"><span
                        style="text-decoration: overline;">G</span><span> </span>=
                      G / {± I}​</span>​</span>. Then one can also
                  define the category<span> </span><span><span
                      style="font-style: italic;">Coh<sub><span
                          style="font-size: 9.96667px;"><span
                            style="text-decoration: overline;">G</span></span></sub>(ℙ<sup><span
                          style="font-size: 9.96667px;">1</span></sup>)​</span>​</span><span> </span>of<span> </span><span><span
                      style="font-style: italic;"><span
                        style="text-decoration: overline;">G</span>​</span>​</span>-equivariant
                  coherent sheaves on the projective line; this abelian
                  category also has a (bounded) derived category. In the
                  second of these talks dedicated to the McKay
                  correspondence, we establish an equivalence between
                  the two derived categories mentioned above.</font></font><br
                clear="all">
            </font></font>
          <div><br>
          </div>
        </div>
        <div align="left"><font color="#ff0000"><font color="#000000"><br>
            </font></font></div>
        <div align="left"><font color="#ff0000"><font color="#000000"><b><font
                  color="#ff0000">Date:<font color="#000000"> 4 November
                    2022</font></font></b>, <b>Friday</b></font></font><br>
        </div>
        <div align="left"><font color="#ff0000"><font color="#000000"><b><font
                  color="#ff0000">Time: </font>15:40 <i>(GMT+3)</i></b><br>
              <b><font color="#ff0000">Place: </font></b><font
                color="#ff0000"><font color="#000000"><b>ODTÜ,
                    Mathematics Department, Room M-203, and Zoom<br>
                  </b></font></font></font></font></div>
        <div align="left"><br>
        </div>
        <hr>
        <pre cols="72">---------------------------------------------------------------------------- 
Ali Sinan Sertöz
Bilkent University, Department of Mathematics, 06800 Ankara, Türkiye
Office: (90)-(312) - 290 1490
Department: (90)-(312) - 266 4377
Fax: (90)-(312) - 290 1797
e-mail: <a href="mailto:sertoz@bilkent.edu.tr" target="_blank" moz-do-not-send="true" class="moz-txt-link-freetext">sertoz@bilkent.edu.tr</a> 
Web: <a href="http://sertoz.bilkent.edu.tr" target="_blank" moz-do-not-send="true">sertoz.bilkent.edu.tr</a> 
----------------------------------------------------------------------------</pre>
      </div>
    </div>
  </body>
</html>