<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body>
<div dir="ltr"><br>
<div lang="x-unicode">
<div align="center"><big><b><big>ODTU-Bilkent Algebraic Geometry
Seminar</big></b></big><b><br>
</b></div>
<div align="center"><i><br>
</i></div>
<div align="center"><b><font color="#8000ff"><font size="4">NEW
ABSTRACT</font></font></b></div>
<div align="center"><br>
</div>
<div align="center"><b><b>Our speaker has provided a new
abstract for this week's talk. The new abstract can be
found below and also on<br>
<a moz-do-not-send="true"
href="http://sertoz.bilkent.edu.tr/agseminar.htm">the
seminar web page.</a><br>
</b></b></div>
<div align="center"><br>
<br>
<div align="left"><b><b><font color="#ff0000">Speaker:<font
color="#000000"> Emre Coşkun<br>
</font></font></b></b><b><b><font color="#ff0000">Affiliation:
<font color="#000000"><i>ODTÜ</i></font></font></b></b><b><b><font
color="#ff0000"><br>
Title:<font color="#000000"> McKay correspondence II<br>
</font><br>
</font></b></b></div>
</div>
<div align="left"><b><b><font color="#ff0000">Abstract:</font></b></b><font
color="#ff0000"><font color="#000000"> </font></font><br>
<font color="#ff0000"><font color="#000000"><font
color="#ff0000"><font color="#000000">Let<span> </span><span><span
style="font-style: italic;">G ⊂ SU(2)</span></span><span> </span>be
a finite subgroup containing<span> </span><span><span
style="font-style: italic;">-I</span></span>,
and let<span> </span><span><span style="font-style:
italic;">Q</span></span><span> </span>be the
corresponding Euclidean graph. Given an orientation on<span> </span><span><span
style="font-style: italic;">Q</span></span>, one
can define the (bounded) derived category of the
representations of the resulting quiver. Let<span> </span><span><span
style="font-style: italic;"><span
style="text-decoration: overline;">G</span><span> </span>=
G / {± I}</span></span>. Then one can also
define the category<span> </span><span><span
style="font-style: italic;">Coh<sub><span
style="font-size: 9.96667px;"><span
style="text-decoration: overline;">G</span></span></sub>(ℙ<sup><span
style="font-size: 9.96667px;">1</span></sup>)</span></span><span> </span>of<span> </span><span><span
style="font-style: italic;"><span
style="text-decoration: overline;">G</span></span></span>-equivariant
coherent sheaves on the projective line; this abelian
category also has a (bounded) derived category. In the
second of these talks dedicated to the McKay
correspondence, we establish an equivalence between
the two derived categories mentioned above.</font></font><br
clear="all">
</font></font>
<div><br>
</div>
</div>
<div align="left"><font color="#ff0000"><font color="#000000"><br>
</font></font></div>
<div align="left"><font color="#ff0000"><font color="#000000"><b><font
color="#ff0000">Date:<font color="#000000"> 4 November
2022</font></font></b>, <b>Friday</b></font></font><br>
</div>
<div align="left"><font color="#ff0000"><font color="#000000"><b><font
color="#ff0000">Time: </font>15:40 <i>(GMT+3)</i></b><br>
<b><font color="#ff0000">Place: </font></b><font
color="#ff0000"><font color="#000000"><b>ODTÜ,
Mathematics Department, Room M-203, and Zoom<br>
</b></font></font></font></font></div>
<div align="left"><br>
</div>
<hr>
<pre cols="72">----------------------------------------------------------------------------
Ali Sinan Sertöz
Bilkent University, Department of Mathematics, 06800 Ankara, Türkiye
Office: (90)-(312) - 290 1490
Department: (90)-(312) - 266 4377
Fax: (90)-(312) - 290 1797
e-mail: <a href="mailto:sertoz@bilkent.edu.tr" target="_blank" moz-do-not-send="true" class="moz-txt-link-freetext">sertoz@bilkent.edu.tr</a>
Web: <a href="http://sertoz.bilkent.edu.tr" target="_blank" moz-do-not-send="true">sertoz.bilkent.edu.tr</a>
----------------------------------------------------------------------------</pre>
</div>
</div>
</body>
</html>