<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body>
<div dir="ltr"><br>
<div lang="x-unicode">
<div align="center"><big><b><big>Welcome to the 2022 Fall talks
of ODTU-Bilkent Algebraic Geometry Seminars</big></b></big><b><br>
</b></div>
<div align="center"><i>since 2000</i><br>
</div>
<div align="center"><b><b>=================================================================</b></b><br>
<br>
This week the <a
href="http://www.bilkent.edu.tr/~sertoz/agseminar.htm"
target="_blank" moz-do-not-send="true">ODTU-Bilkent
Algebraic Geometry Seminar</a> is <b>online</b><br>
<br>
<i><font color="#ff00ff">This talk will begin at <u><b>15:40</b></u><u> (GMT+3)</u></font></i><br>
<a
href="https://www.timeanddate.com/worldclock/fixedtime.html?msg=ODT%C3%9C-Bilkent+Algebraic+Geometry+Seminar&iso=20221202T1540&p1=19"
target="_blank" moz-do-not-send="true">Please check your
time difference between Ankara and your city here</a><br>
<b>=================================================================</b></div>
<div align="center"><br>
<img src="cid:part1.SmKUbtvb.BiR0U0NU@bilkent.edu.tr" alt=""
class="">
<div align="center"><b> </b></div>
<font size="2"><i>Angus Wilson</i></font><br>
<div align="left"><b><b><font color="#ff0000">Speaker:<font
color="#000000"> Fatma Karaoğlu<br>
</font></font></b></b><b><b><font color="#ff0000">Affiliation:
<font color="#000000"><i>Gebze Teknik</i></font></font></b></b><b><b><font
color="#ff0000"><br>
Title:<font color="#000000"> Smooth cubic surfaces
with 15 lines<br>
</font><br>
</font></b></b></div>
</div>
<div align="left"><b><b><font color="#ff0000">Abstract:</font></b></b><font
color="#ff0000"><font color="#000000"> It is well-known that
a smooth cubic surface has 27 lines over an algebraically
closed field. If the field is not closed, however, fewer
lines are possible. The next possible case is that of
smooth cubic surfaces with 15 lines. This work is a
contribution to the problem of classifying smooth cubic
surfaces with 15 lines over fields of positive
characteristic. We present an algorithm to classify such
surfaces over small finite fields. Our classification
algorithm is based on a new normal form of the equation of
a cubic surface with 15 lines and less than 10 Eckardt
points. The case of cubic surfaces with more than 10
Eckardt points is dealt with separately. Classification
results for fields of order at most 13 are presented and a
verification using an enumerative formula of Das is
performed. Our work is based on a generalization of the
old result due to Cayley and Salmon that there are 27
lines if the field is algebraically closed.</font></font></div>
<div align="left"><font color="#ff0000"><font color="#000000">
<br>
</font></font></div>
<div align="left"><font color="#ff0000"><font color="#000000"><b><font
color="#ff0000">Date:<font color="#000000"> 2 December
2022</font></font></b>, <b>Friday</b></font></font><br>
</div>
<div align="left"><font color="#ff0000"><font color="#000000"><b><font
color="#ff0000">Time: </font>15:40 <i>(GMT+3)</i></b><br>
<b><font color="#ff0000">Place: </font></b><font
color="#ff0000"><font color="#000000"><b>Zoom</b></font></font></font></font></div>
<blockquote>
<p><font color="#ff0000"><font color="#000000"><font
color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">One
day before the seminar, an announcement with the
Zoom meeting link will be sent to those who
registered with Sertöz.<br>
</b></b></font></font></font></font></p>
<p><font color="#ff0000"><font color="#000000"><font
color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">If
you have registered before for one of the
previous talks, there is no need to register
again; you will automatically receive a link for
this talk too.<br>
</b></b></font></font></font></font></p>
<p><font color="#ff0000"><font color="#000000"><font
color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">If
you have not registered before, please contact
him at <a
href="mailto:sertoz@bilkent.edu.tr?subject=Zoom%20Seminar%20Address%20Request"
target="_blank" moz-do-not-send="true">sertoz@bilkent.edu.tr</a>.</b></b></font></font></font></font></p>
</blockquote>
<div align="left"><br>
</div>
<div align="left">You are most cordially invited to attend.</div>
<div align="left"><br>
</div>
<div align="left">Ali Sinan Sertöz</div>
<div align="left"><br>
</div>
<hr>
<pre cols="72">----------------------------------------------------------------------------
Ali Sinan Sertöz
Bilkent University, Department of Mathematics, 06800 Ankara, Türkiye
Office: (90)-(312) - 290 1490
Department: (90)-(312) - 266 4377
Fax: (90)-(312) - 290 1797
e-mail: <a href="mailto:sertoz@bilkent.edu.tr" target="_blank" moz-do-not-send="true" class="moz-txt-link-freetext">sertoz@bilkent.edu.tr</a>
Web: <a href="http://sertoz.bilkent.edu.tr" target="_blank" moz-do-not-send="true">sertoz.bilkent.edu.tr</a>
----------------------------------------------------------------------------</pre>
</div>
</div>
</body>
</html>