<div dir="ltr"><span style="color:rgb(80,0,80)"><div>Dear Colleagues!<br></div><br>You are cordially invited to the </span> <span style="color:rgb(80,0,80)">Weekly Online</span>  <span style="color:rgb(80,0,80)">Seminar “Analysis and Applied Mathematics” on<br><br></span>Date: Tuesday, January 10, 2023<span style="color:rgb(80,0,80)"><br><br></span>  Time: 14.00-15.00 (Istanbul) = 12.00-13.00 (Ghent) = 17.00-18.00 (Almaty)  <span style="color:rgb(80,0,80)"><br><br>Zoom link: <a href="https://us02web.zoom.us/j/6678270445?pwd=SFNmQUIvT0tRaH-lDaVYrN3l5bzJVQT09" target="_blank">https://us02web.zoom.us/j/6678270445?pwd=SFNmQUIvT0tRaH-lDaVYrN3l5bzJVQT09</a>, Conference ID: 667 827 0445, Access code: 1<br><br></span>Speaker: 

Prof. Dr. Lev Birbrair <div>Federal University of Ceará (Brazil) and Jagiellonian University (Poland)  <div><div><div><div><br><div>  

Title: Resonance Sequences and Focal Decompositions (where
Differential Equations meet Number Theory)

</div><div>Abstract:

Focal decomposition of Peixoto associated to an ordinary differential equation of
the second order is a partition of the set of all two-points boundary value problems according
to the number of their solutions. Two equations are called focally equivalent if there exists a
homomorphism of the set of two-points problems to itself such that the image of the focal
decomposition associated to the first equation is a focal decomposition associated to the second one.
Let 𝛼 = {𝛼1, … , 𝛼𝑘} be a finite multiset of non-negative real numbers. Consider the sequence of all positive integer multiples of all 𝛼𝛼𝑖𝑖’s, and note the multiplicity of each term in this
sequence. This sequence of multiplicities is the resonance sequence generated by
{𝛼1, … , 𝛼𝑘}. Two multisets are combinatorially equivalent if they generate the same resonance sequence.
We show that the problem of combinatorial equivalence of multisets is closely related
to the problem of classification of systems of second order ordinary differential equations up
to focal equivalence.
The lecture is dedicated to the memory of Prof. Dr.
Marina Sobolevsky, the principal collaborator of some important works in this direction.</div><div><span style="color:rgb(80,0,80)"><div>Abstracts and forthcoming talks can be found on our webpage<br><a href="https://sites.google.com/view/aam-seminars" target="_blank">https://sites.google.com/view/aam-seminars</a><br>With my best wishes</div></span></div></div></div></div></div><div><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div style="font-size:12.8px"><b style="font-size:12.8px">Prof. Dr. Allaberen Ashyralyev </b></div><div style="font-size:12.8px"><span style="font-size:small"><b>Department of Mathematics, Bahcesehir University, 34353, Istanbul, Turkey</b></span><b style="font-size:12.8px">  and </b><b style="font-size:12.8px">Near East University, Lefkoşa(Nicosia), Mersin 10 Turkey</b></div><div><div style="font-size:12.8px"><span style="font-size:12.8px"><b>Peoples' Friendship University of Russia (RUDN University),</b></span><b style="color:rgb(51,51,51);font-family:arial,helvetica,sans-serif;font-size:13px"> Ul Miklukho Maklaya 6, Moscow 117198, Russian Federation </b></div><div style="font-size:12.8px"><b style="font-size:12.8px">Institute of Mathematics and Mathematical Modelling, 050010, Almaty, Kazakhstan</b></div><div style="font-size:12.8px"><b style="font-size:12.8px">e-mail: <a href="mailto:allaberen.ashyralyev@neu.edu.tr" style="color:rgb(17,85,204)" target="_blank">allaberen.ashyralyev@eng.bau.edu.tr</a> and </b><b style="font-size:12.8px"><a href="mailto:aallaberen@gmail.com" style="color:rgb(17,85,204)" target="_blank">aallaberen@gmail.com</a> </b></div><div style="font-size:12.8px"><b style="font-size:12.8px"> </b><a href="http://akademik.bahcesehir.edu.tr/web/allaberenashyralyev" style="color:rgb(0,86,179);margin:0px;padding:0px;border:0px;font-stretch:inherit;font-size:14px;line-height:inherit;font-family:Roboto,sans-serif;vertical-align:baseline" target="_blank">http://akademik.bahcesehir.edu.tr/web/allaberenashyralyev</a></div><div><p class="MsoNormal"><a href="https://sites.google.com/view/aam-seminars" target="_blank">https://sites.google.com/view/aam-seminars</a></p></div><div><a href="https://content.sciendo.com/view/journals/ejaam/ejaam-overview.xml" target="_blank">https://content.sciendo.com/view/journals/ejaam/ejaam-overview.xml</a><br></div><div><font color="#1155cc"><span style="font-size:12.8px"><b><u><a href="http://icaam-online.org" target="_blank">icaam-online.org</a></u></b></span></font></div></div><div><font color="#1155cc"><span style="font-size:12.8px"><b><a href="https://www.genealogy.math.ndsu.nodak.edu/id.php?id=95872&fChrono=1" target="_blank">https://www.genealogy.math.ndsu.nodak.edu/id.php?id=95872&fChrono=1<br></a></b></span><br></font></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div>