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FOREWORD

On behalf of the Organizing Committee, we are pleased to invite you to the Interna-
tional Mathematical Conference “Functional Analysis in Interdisciplinary Applications”
(FAIA2023).

This onference aims to bring together mathematicians working in the functional anal-
ysis and its applications.

The meeting will be held on October 02–October 07, 2023 in Antalya, Türkiye. The
conference will consist of plenary lectures, and sectional oral presentations.

This Astract book contains brief abstracts of the reports of the participants of the
FAIA2023. The collection of abstracts is organized in alphabetical order by the last
name of the first author.

We would like to thank our main sponsors Bahçeşehir University, Türkiye, Institute
of Mathematics and Mathematical Modeling, Kazakhstan, and Ghent Analysis & PDE
Center, Belgium. We also would like to thank to all participants and Technical Program
Committee Members.

With our best wishes and warm regards,

Prof. Allaberen Ashyralyev

Prof. Michael Ruzhansky

Prof. Makhmud Sadybekov

Chairs of FAIA2023

Bahçeşehir University (Türkiye), Ghent University (Belgium),
Institute of Mathematics and Mathematical Modeling (Kazakhstan)
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Boundedness and Compactness of Commutator
Bilinear Riesz Potential in Generalized Morrey Spaces

Aidos ADILKHANOV1,c, Talgat AKHAZHANOV1,b Dauren MATIN1,a

1 L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
E-mail: ad.matin@mail.ru, btalgat-a2008@mail.ru,

cadilkhanov-kz@mail.ru

In this paper, we obtain that b ∈ VMO(Rn) the commutator [b; Iα] is
compactness in generalized Morrey space from Mw1

p1
× Mw2

p2
to Mw

q ., for
some appropriate indices p1; p2; q;w;w1;w2;α.

The main goal of this paper is to find sufficient conditions for the com-
mutator of bilinear [b, Iα] to be precompact in the generalized Morrey space
Mw

p (Rn).

Let 1 ≤ p ≤ ∞, w be a measurable non-negative function on (0,∞)

that is not equivalent to zero. The generalized Morrey space M
w(·)
p ≡

M
w(·)
p (Rn) is defined as the set of all functions f ∈ Lloc

p (Rn) with finite

norm ∥f∥
M

w(·)
p

≡ sup
x∈Rn

sup
r>0

(
w(r) ∥f∥Lp(B(x,r))

)
< ∞

For 0 < α < 2n, the bilinear fractional integral is defined by Iα(f, g)(x) =∫
Rn

∫
Rn

f(y)g(z)
(|x−y|+|x−z|)2n−α dydz

For a function b ∈ Lloc(Rn) by Mb denote multiplier operator Mbf = bf ,
where f is measurable function. Then the commutator between Iα and Mb

is defined by [b, Iα]1 (f, g)(x) = MbIα−IαMb =
∫
Rn

∫
Rn

(b(y)−b(x))f(y)g(z)
(|x−y|+|x−z|)2n−α dydz,

[b, Iα]2 (f, g)(x) = MbIα − IαMb =
∫
Rn

∫
Rn

(b(z)−b(x))f(y)g(z)
(|x−y|+|x−z|)2n−α dydz

It is said that the function b(x) ∈ L∞(Rn) belongs to the spaceBMO(Rn),
if ∥b∥∗ = supQ⊂Rn

1
|Q|

∫
Q

|b(x)− bQ| dx = supQ∈Rn M(b,Q) < ∞, where Q -

cube Rn and bQ = 1
|Q|

∫
Rn

f(y)dy.

By VMO(Rn) we denote the BMO-closure C∞
0 (Rn), where C∞

0 (Rn)
the set of all functions from C∞(Rn) with compact support. Through the
χ(A) denotes the characteristic function of the set B ⊂ Rn, and cA denotes
the complement of A.

The main goal of this paper is to find sufficient conditions for the com-
mutator of bilinear [b, Iα] to be precompact in the generalized Morrey space
Mw

p (Rn).

Let 1 ≤ p ≤ ∞, w be a measurable non-negative function on (0,∞) that

is not equivalent to zero. The generalized Morrey spaceM
w(·)
p ≡ M

w(·)
p (Rn)

is defined as the set of all functions f ∈ Lloc
p (Rn) with finite norm

∥f∥
M

w(·)
p

≡ sup
x∈Rn

sup
r>0

(
w(r) ∥f∥Lp(B(x,r))

)
< ∞

Bahçeşehir University (Türkiye), Ghent University (Belgium),
Institute of Mathematics and Mathematical Modeling (Kazakhstan)
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Theorem 1. [1] Let 1 ≤ p ≤ ∞ and w ∈ Ωp∞. Let’s assume that the

set S ⊂ M
w(·)
p satisfies the following conditions:

sup
f∈S

∥f∥
M

w(·)
p

< ∞,

lim
|u|→0

sup
f∈S

∥f(·+ u)− f(·)∥
M

w(·)
p

= 0,

lim
r→∞

sup
f∈S

∥∥fχcB(0,r)

∥∥
M

w(·)
p

= 0.

Then S is a pre compact set in M
w(·)
p .

Suppose that the continuous increasing functions w1, w2 in [0;∞) satisfy
the following conditions (j = 1, 2):

a) wj(0) = 0;

b) limr→∞wj(r) < ∞;

c) There exists a constant D, satisfying 1 ≤ D < 2n, such that wj(2r) ≤
Dwj(r) for any r > 0;

d)w(r)
1
p = w1(r)

1
p
1 w2(r)

1
p
2

Theorem 2. Let 0 < α < 2n, 0 < λ < n, 1
2 < p < n−λ

α , 1 < p1, p2 <

∞, 1
p = 1

p1
+ 1

p2
, 1 < q < ∞, 1

q = 1
p − α

n−λ , functions w,w1, w2 ∈ Ωp,∞
satisfying conditions (a)-(d) for any r > 0. Then Iα is bounded bilinear
operator from Mw1

p1
× Mw2

p2
to Mw

q . For b ∈ BMO(Rn), the commutator
[b, Iα]i is also bounded from Mw1

p1
×Mw2

p2
to Mw

q , i = 1, 2,

(1) ∥ [b, Iα]i (f, g)∥Mw
q
≤ C∥b∥BMO∥f∥Mw1

p1
∥f∥Mw2

p2

Theorem 3. Let 0 < α < 2n, 0 < λ < n, 1
2 < p < n−λ

α , 1 < p1, p2 < ∞,
1
p = 1

p1
+ 1

p2
, 1 < q < ∞, 1q = 1

p −
α

n−λ , function w,w1, w2 ∈ Ωp,∞ satisfying

conditions (a)-(d) for any r > 0 and b ∈ VMO(Rn), (1). Then commutator
[b, Iα]i is a compact from Mw1

p1
×Mw2

p2
to Mw

q , i = 1, 2.

Funding: This work is funded by the Science Committee of the Ministry of Science and

Higher Education of the Republic of Kazakhstan (grant no. AP14969523).

Keywords: commutator, single integral operator, compactness, global Morrey-type
space.

2020 Mathematics Subject Classification: 35Q79, 35K05, 35K20
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Solution of the Cauchy Problem of the Dynamics of a
Thermoelastic Rod Using the Vladimirov Method

N.Zh.AINAKEYEVA1,2,3

1 Joldasbekov Institute of Mechanics and Engineering, Almaty,
Kazakhstan

2 Institute of Mathematics and Mathematical Modeling, Almaty,
Kazakhstan

3 Narxoz University, Almaty, Kazakhstan

E-mail: nursaule math@mail.ru

Nonstationary boundary value problems of the dynamics of thermoelastic rods are

considered. Based on the generalized function method, a solution to the Cauchy problem
was constructed using a model of uncoupled thermoelasticity under the influence of non-

stationary force and thermal loads of various types. Regular integral representations of
the solution to the Cauchy problem for a thermoelastic rod are obtained.

1. Statement of the Cauchy problem for the equations of uncoupled ther-

moelasticity. We consider a thermoelastic rod, the equations of state of which have
the form [1]:

(2)

{
ρc2u,xx − ρu,tt − γθ,x + ρF1(x, t) = 0

θ,xx − k−1θ,t + F2(x, t) = 0

where x ∈ R1, t ≥ 0 . F1(x, t) -longitudinal component of external force per unit length,

F2(x, t) - quantity characterizing the power of the heat source.

Thermoelastic stresses in the rod are related to displacement by the Duhamel-Neumann

law:

(3) σ(x, t) = ρc2u,x − γθ

The initial conditions are known:

u(x, 0) = u0(x), u,t(x, 0) = ν0(x), θ(x, 0) = θ0(x),

u0(x) ∈ C2(R1), θ0(x) ∈ C2(R1), ν0(x) ∈ C2(R1).
(4)

Cn(R1) where is the space of functions differentiable up to the nth order on R1.

It is required to find solutions to equations (1) with initial conditions (3), which

satisfy the radiation conditions: under u(x, t) → 0, θ(x, t) → 0, under |x| → ∞, ∀t the
action of arbitrary forces and heat sources: Fj(x, t) = L1(R1), under j = 1, 2.

2. Statement of the Cauchy problem in the space of generalized functions.

To solve the problem we use the method developed by V.S. Vladimirov. to solve the
Cauchy problem of wave equations [2]. Let us introduce the following regular generalized

functions:

(5) û(x, t) = u(x, t)H(t), θ̂(x, t) = θ(x, t)H(t), F̂ (x, t) = F (x, t)H(t)

System (1) in the space of generalized functions will have the following form:

c2û,xx − û,tt − γ̃θ̂,x = −F1(x, t)H(t)− ν0(x)δ(t)− u0(x)δ
′(t) = −F̂1(x, t)

∂θ̂

∂x2
− k−1 ∂θ̂

∂t
= −F2(x, t)H(t) + k−1θ0(x)δ(t) = −F̂2(x, t).

(6)

where γ̃ = γ
ρ
. The right-hand sides of these equations (5) include the initial conditions

as singular mass forces and heat sources:

F̂1(x, t) = F1(x, t)H(t) + ν0(x)δ(t) + u0(x)δ
′(t),

F̂2(x, t) = F2(x, t)H(t) + k−1θ0(x)δ(t).
(7)

Bahçeşehir University (Türkiye), Ghent University (Belgium),
Institute of Mathematics and Mathematical Modeling (Kazakhstan)
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The solution to this problem in the space of generalized functions has the form of

tensor-functional convolution [1]:

û(x, t) = u(x, t)H(t) = Ûk
1 (x, t) ∗ F̂△k(x, t), (k = 1, 2),

θ̂(x, t) = θ(x, t)H(t) = Ûk
2 (x, t) ∗ F̂△k(x, t), (k = 1, 2).

(8)

3. Green’s tensor of the equations of unbound thermoelasticity. Green’s

tensor Uj
i (x, t) is a matrix of fundamental solutions of system (1) under the action of

pulsed concentrated forces and a heat source of the form:

(9) F1 = δ(x)δ(t)δj1, F2 = δ(x)δ(t)δj2, j = 1, 2

The Green’s tensor is constructed and has the following form [3]:

Uj
1 (x, t) = δj1k

−1 ∂Σ1

∂t
− δj1

∂Σ1

∂x2
− δj2γ̃

∂Σ1

∂x
− δj1Σ3(t)δ(x) + δj2γ̃

∂Σ2

∂x
,

U1
2 = 0, U2

2 = c2Σ3(x, t) + c2
∂2Σ2

∂x2
−
∂2Σ2

∂t2
, ...j = 1, 2.

(10)

Knowing the Green’s tensor, it is possible to construct a solution to system (6) for

any sources in the form of a tensor-functional convolution (7).

4. Solutions to the Cauchy problem. To obtain an integral representation of

the generalized solution, we take convolutions (7) taking into account (6), using the

properties of the δ- function and its derivative:

û(x, t) = u(x, t)H(t) = Û1
1 (x, t) ∗ F1(x, t)H(t) + Û1

1 (x, t) ∗x ν0(x)+

∂

∂t
Û1
1 (x, t) ∗x u0(x) + Û2

1 (x, t) ∗x F2(x)H(t) + Û2
1 (x, t) ∗x k

−1θ0(x)
(11)

(12) θ̂(x, t) = θ(x, t)H(t) = Û2
2 (x, t) ∗ F2(x, t)H(t) + Û2

2 (x, t) ∗x k
−1θ0(x)

I would like to note that all the initial conditions of the Cauchy Problem are included

in the right side of relations (10), (11).

So, using the apparatus of generalized function theories, we solved the Cauchy prob-
lem. The solutions obtained make it possible to find the stress-strain state in the rod

under the action of various common power and heat sources using formulas and theo-

rems, i.e. if we pose the Cauchy Problem under new initial conditions (3). We substitute
these data into the right side of the resulting formulas (10) and (11) and obtain new

solutions to the Cauchy Problem.

Funding: The authors were supported by the grant AP19674789 ”Generalized solutions

of biquaternion wave equations, their properties and application in field theory” and
project BR20280990 ”Development and development of methods for solving fundamental
problems of fluid and gas mechanics, new deformable bodies, reliability and energy

efficiency of machines, mechanisms, robotics” of the Science Committee of the Ministry
of Science and Higher Education of the Republic of Kazakhstan.

Keywords: Cauchy problem, rod, uncoupled thermoelasticity, generalized function
method, heat flow, temperature, displacement and stress.

2020 Mathematics Subject Classification: 74A15, 65R20, 35L05, 35K05.
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Approximation of Functions of Two Variables of
Bounded P-Fluctuation by Polynomials with Respect

to Walsh Systems
Talgat AKHAZHANOV1,a, Dauren MATIN1,b

1 L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
E-mail: atalgat-a2008@mail.ru, bd.matin@mail.ru

IN THIS PAPER, WE PROVE DIRECT AND CONVERSE THEOREMS OF AP-

PROXIMATIONOF FUNCTIONS OF TWOVARIABLES OF BOUNDED P-FLUCTUATIONS

BY WALSH POLYNOMIALS IN THE NORM OF THE SPACE.

Let 1 ≤ p <∞ and the function f(x, y) be defined on the set [0, 1)2 and for any set I

denote by I
(n1,n2)
j1,j2

rectangular
[
j1−1
2n1 , j1

2n1

)
×
[
j2−1
2n2 , j2

2n2

)
. Denote by osc

(
f, [a, b)2

)
=

sup
(x,y),(x′,y′)∈I

|f(x, y)− f(x′, y′)| .

By definition, κp(f, n1, n2) :=
(∑2n1

j1=1

∑2n2

j2=1

(
osc
(
f, I

(n1,n2)
j1,j2

))p)1/p
. If Vp(f) :=

sup
n1∈P
n2∈P

κp(f, n1, n2) <∞, then f(x, y) is called the function of bounded p-fluctuation. In

one variable case, the definition was introduced by Onneweer and Waterman [1] Now we

introduce a discrete modulus of continuity Vp(f)n1,n2 = sup
k1≥n1
k2≥n1

κp(f, k1, k2). The set of

functions f(x, y), for which Vp(f) < ∞, we denote by FVp [0, 1)2 (1 ≤ p <∞). Let us

introduce one more discrete group modulus of continuity related to the space FCp [0, 1)2

(1 < p <∞), by the formula

Vp(f)
∗
n1,n2

= sup
0≤h1< 1

2n1

0≤h2< 1
2n2

∥f(x1 ⊕ h1, x2 ⊕ h2)− f(x1, x2)∥p,F .

Theorem 1. Let 1 < p < ∞, n,m ∈ N , f ∈ FVp [0, 1)2. Then the following

inequality is valid: 1
2
Vp(f)∗m,n ≤ E2m,2n (f)p,F ≤ Vp(f)∗m,n..

Funding: This work is funded by the Science Committee of the Ministry of Science and
Higher Education of the Republic of Kazakhstan (grant no. AP15473253).
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Metrics
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Let Mn be a smooth manifold and L an operator filed on it.

Definition. Nijenhuis torsion NL is a tensor type of (1, 2) which in the invariant
form can be defined by following formula

NL = L2[u, v] + [Lu,Lv]− L[Lu, v]− L[u, Lv],

where u and v are a smooth vector fields.

Definition. Operator field L is Nijenhuis operator if NL ≡ 0.

Definition. Two metrics g and ḡ are called Geodesically Equivalent if they share

same geodesics viewed as unparameterized curves.

Let g and ḡ are metrics on the smooth manifold M. Then the condition of the Geodesic

Equivalence can be written by the following equation:

∇g
kRij = λigjk + λjgik,

where R = |det ḡ
det g

|
1

n+1 gḡ−1g, λi =
∂Rsjg

sj

∂xi .

In the coordinates it’s a system of linear PDE for components of the metric g.

gis
∂Ls

j

∂xk
+ gjs

∂Ls
i

∂xk
− (

∂gsk

∂xi
−
∂gik

∂xs
)Ls

j − (
∂gsk

∂xj
−
∂gjk

∂xs
)Ls

i =
∂trL

∂xi
gjk +

∂trL

∂xj
gik

Theorem 1.[1] L = g−1R is Nijenhuis operator.

Definition. A metric g and a Nijenhuis operator L are said to be geodesically
compatible, if L is g-self-adjoint and the metric ḡ = 1

detL
gL−1 is geodesically equivalent

to g.

Let χ(t) = det(tE −L) = tn + σ1tn−1 + . . .+ σn be characteristic polynomial of the

Nijenhuis operator L.

Theorem 2. For geodesically compatible pair (L, g) true next formula:

det g = f1(λ1) . . . fn(λn)(det dΦ)2,

where λi are eigenvalues and Φ : Mn → Rn, Φ = (σ1, . . . , σn), fi are arbitrary almost
everywhere smooth functions.

Theorem 3. Let L be a Nijenhuis operator, then:

1. If L is algebraically generic, then there exists geodesically compatible metric g and

geodesic flow of the g is integrable;

2. If L is gl-regular ([1]), then also we can find geodesically compatible metric g and

geodesic flow of the g is integrable;

In the talk I will show examples of the Nijenhuis operators when there does not exist
geodesically compatible metric.

Keywords: Integrable systems, Nijenhuis geometry, Nijenhuis operators, Geodesically

Equivalent Metrics, Geodesic flow.
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In this paper, we obtain weighted versions of radial and logarithmic refinements of
the following Hardy’s inequality using the factorization method of differential operators

from [1]-[3]:∫
Ω
|(∇f)(x)|2dnx ⩾

∫
Ω

|x− x0|−2 |f(x)|2
{
(n− 2)2

4

+
1

4

m∑
j=1

j∏
k=1

[lnk (γ/ |x− x0|)]−2

 dnx,

, (1)

valid for f ∈ C∞
0 (Ω), assuming that Ω ⊂ Rn, n ∈ N, n ⩾ 2, is open and bounded with

x0 ∈ Ω,m ∈ N, and the logarithmic terms lnk (γ/ |x− x0|) , k ∈ N.

Moreover, we discuss generalizations of these results on homogeneous Lie groups.

This talk is based on the joint research with Nurgissa Yessirkegenov.
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Keywords: factorization method, Hardy’s inequality, homogeneous Lie group, stratified
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Large Time Asymptotes to the Cauchy Problem for
Doubly Nonlinear Parabolic Equation with Variable

Density and Absorption
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The following Cauchy problem

ρ2 (x) ∂tu = uqdiv

(
ρ1 (x)u

m−1
∣∣∣∇uk∣∣∣p−2

∇u
)
−ρ3 (x) tluβ , u (t0, x) = u0 (x) , x ∈ RN (1)

is considered in Q =
{
(t, x) : t > 0, x ∈ RN

}
,

where m, k ≥ 1, p ≥ 2, n, li, l, β (i = 1, 2) are the given numerical parameters

ρ1 (x) = |x|n, ρi+1 (x) = |x|−li , i = 1, 2, q ∈ (0, 1) .

The different qualitative properties of the solution problem (1) in one and many

dimensional cases intensively studied by many authors [see [1-3] and references therein).
In this work estimates of solutions and a free boundary, behaviors of solutions of the

problem (1) for slowly (k(p − 2) +m − 1 > 0), fast (k(p − 2) +m − 1 < 0), a critical

diffusion (k(p− 2)+m− 1 = 2) cases, depending on value of density p > n+ l, p = n+ l
(singular) established. The problem choosing of an initial approximation for iteration

process solved. The results of numerical experiments discussed.

Keywords: global solvability, estimate solution, critical, singular cases, asymptotic,

numerical analysis..
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1 Bahçeşehir University, Istanbul, Turkey
2 Bilimler Akademisi, Istanbul, Turkey

E-mail: aaallaberen@gmail.com, bmesuturun@gmail.com

Keywords: Schrödinger equation, source identification problem, Hilbert space, positive

operator, absolute stable, difference schemes.

2020 Mathematics Subject Classification: 35A22, 35B30, 35F10

References

[1] Ashyralyev, A., Sobolevski, P.E. New difference schemes for partial differential

equations, Besel (2004).

[2] Ashyralyev, A., Urun, M. Time-dependent source identification Schrodinger type

problem, TWMS J. Pure Appl. Math., 13:2 (2022), 245-255.

[3] Ashyralyev, A., Urun, M. Time-dependent source identification Schrodinger type
problem, International Journal of Applied Mathematics, 34:2 (2021), 297-310.

[4] Ashyralyev, A.,Urun, M. On the Crank-Nicolson difference scheme for the time-

dependent source identification problem, Bulletin of the Karaganda university. Mathe-
matics,, 102:2 (2021), 35-44.

[5] Agırseven, D. On the stability of the Schrödinger equation with time delay, Filo-

mat, 34:2 (2018), 759-766.
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On the Asymptotic Solutions of Perturbation
Problems for Hyperbolic Equations
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The abstract initial value problem{
ε2u

′′
(t) +Au(t) = f(t), 0 < t < T,

u(0) = φ, u
′
(0) = ψ

for hyperbolic equations is considered. The study is done in a Hilbert space H with

the self adjoint positive definite operator A. A small parameter ε ∈ (0,∞) is used in

the equation. The solution of the problem using an asymptotic formula with a small
parameter is introduced. The study presents the general perturbation theory of uniform

difference schemes on hyperbolic PDEs. Convergence estimes are obtained and some

numerical verifications which verify the theoretical results are presented.

Keywords: hyperbolic equations, Cauchy problem, asymptotic formula, uniform differ-

ence schemes.
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In the paper [1] source identification problem for parabolic equation with multipoint

nonlocal condition was studied. The paper [2] is devoted to the well-posedness of direct
nonlocal problems for a reverse parabolic equation with integral type nonlocal condi-

tion. The aim of the present work is to study the source identification problem for the

multidimensional reverse parabolic equation.

We consider in [0, 1]×Ω, the source identification problem to find unkown functions

v and p for the multi dimensional reverse parabolic equation with the following multi
point nonlocal and Dirichlet boundary conditions

(14)



∂v(t,x)
∂t

+
n∑

i=1
(ar(x)vxi (t, x))xi − σv(t, x) = f(t, x) + p(x),

x = (x1, · · ·, xn) ∈ Ω, 0 < t < 1,

v(1, x) =
r∑

k=1
µkv(sk, x) + ψ, v(0, x) = φ(x), x ∈ Ω,

v(t, x) = 0, x ∈ S.

Here Ω = (0, 1)n is the unit open cube in the Rn with boundary S = ∂Ω,Ω = Ω∪S
and γ1, γ2, ..., γr, µ1, µ2, ..., µr are given numbers and inequalities

(15)
r∑

k=1

|µk| < 1, 0 ≤ γ1 < γ2 < ... < γr < 1.

Let ar(x) ≥ a0 > 0, r = 1, ..., n be given functions, σ is a known positive number.

Theorem. Assume that the inequalities (15) are valid, φ ∈ L2(Ω),
ψ ∈ W 2

2 (Ω), f ∈ Cα(L2(Ω)) are given. Then, the source identification problem (14) is
uniquely solvable and for its solution the following stability estimates are valid:

(16) ∥p∥L2(Ω) ≤M

[
∥φ∥L2(Ω) + ∥ψ∥W2

2 (Ω) +
1

α
∥f∥Cα(L2(Ω))

]
(17) ∥v∥C(L2(Ω)) ≤M

[
∥φ∥L2(Ω) + ∥ψ∥L2(Ω) + ∥f∥C(L2(Ω))

]
,

where positive number M is independent of f(t, x), ψ(x), φ(x), and α.
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Third-order weighted essentially nonoscillatory
schemes for advection-diffusion equation
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Advection-diffusion equations are widely used in the modeling of many physical phe-

nomena, such as in fluid dynamics, semiconductor physics, thermal heat diffusion, flow
through porous media, the spread of pollution in rivers, etc. Since the analytical solu-

tions of advection-diffusion equations are not easy to find, one needs to solve them by

using numerical methods.

Weighted essentially non-oscillatory (WENO) schemes [1] have become popular tech-

niques for the numerical solutions of hyperbolic conservation laws. It is known that

the standard WENO schemes are unstable for advection-diffusion problems. This pa-
per shows the extension of the third-order finite volume WENO scheme [2] to solve

one-dimensional advection-diffusion equations.
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The interest in reconstruction problems has grown tremendously in the last four
decades, stimulated by the spectrum of new modalities of image reconstruction. These

are X-ray, MRI, gamma and positron radiography, ultrasound, seismic tomography, elec-

tron microscopy, synthetic radar imaging and others. The physical principles of these
methods are very different; however their mathematical models and solution methods

have very much in common. The umbrella name reconstructive integral geometry is used

to specify the variety of these problems and methods [1]-[3].

With fairly general assumptions about the family of curves and the weight function,

the problem of integral geometry is reduced to a boundary value problem for a second-

order partial differential equation. Estimates of the conditional stability of discrete
analogs of a two-dimensional integral geometry problem with a weight function on the

space of sufficiently smooth functions are obtained.

The results of studying the problem under consideration contribute to the devel-
opment of the theory and practical implementation of integral geometry problems in

various fields of science and technology.
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We consider an elliptical system

a11
∂2u

∂x2
+ (a12 + a21)

∂2u

∂x∂y
+ a22

∂2u

∂y2
= 0 (1)

with constant coefficients aij ∈ Rl×l.

Its solution is understood as l - vector function u = (u1, . . . , ul) from class C2 in the

area under consideration, satisfying identical to equation (1).
The ellipticity condition is that det a22 ̸= 0 and the characteristic polynomial

χ(z) = detP (z), P (z) = a11 + (a12 + a21)z + a22z
2, (2)

of degree 2l have no real roots.

Let ν1, . . . , νm be all distinct roots of the polynomial χ, lying in the upper half-plane
Im z > 0, which we also call the eigenvalues of the matrix polynomial P (z).

Lemma 1. There are matrices b, J ∈ Cl×l, such that

det

(
b b

bJ bJ

)
̸= 0, σ(J) = {ν1, . . . , νm}, (3)

a11b+ (a12 + a21)bJ + a22bJ
2 = 0. (4)

The 1st order canonical system is closely related to the elliptic system (1)

∂ϕ

∂y
− J

∂ϕ

∂x
= 0, J = diag (J1, . . . , Jm) ∈ Cl×l, Ji ∈ Cli×li , σ(Ji) = {νi} (5)

which, in particular, for J = i corresponds to the Cauchy-Riemann system.

For equation (1) in the half-plane D = { y > 0}, consider the boundary value problem

(pux + quy + p0u)
∣∣
R = g. (6)

We search the solution u in the class C1,µ
(λ)

(D;F ), 0 < λ < 1.

The right side g is selected from the class Cµ
λ−σ(D;F ), l × l-the matrix coefficients

p, q and p0 are assumed to be piecewise continuous on R with possible discontinuities at
points τ ∈ F. More precisely, there exists a ε > 0, such that

p, q ∈ Cµ+ε
(ε)

(G; a, b), p0 ∈ Cµ+ε
ε−σ (G; a, b) (7)

for any interval G = (a, b), into which the complement R \ F0. is divided.

Theorem 1. Problem (1), (6) in class {u ∈ C1,µ
(λ)

, u(∞) = 0}, 0 < λ < 1, is equivalent

to finding analytic vector functions in this class ψ(z) by boundary condition

Re (Gψ′ +G0ψ)
∣∣
R = g (8)

with matrix coefficients G = pb+ qbJ, G0 = p0b.
The connection between the solutions of these problems is carried out by the Bitsadze

formula [1]

u = Re bEψ, (9)

where the operation E is given block by block by the equality

(Eψ)i = Eiψi =

li−1∑
k=0

yk

k!
(Ji − νi)

kψ
(k)
i (x+ νiy), z = x+ iy, i = 1, . . . ,m. (10)
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Let us consider the case when the coefficients p, q in (6) are constant, and p0 = 0,

i.e. the problem

(pux + quy)
∣∣
R = g, p, q ∈ Rl×l. (11)

In this case, the matrix G = pb + qbJ ∈ Cl×l and the statements of Theorem 1 can be

significantly supplemented.

Theorem 2. a) If detG = 0, then homogeneous problem (1), (11) in the class

C1,µ
(λ)

, 0 < λ < 1, has an infinite number of linearly independent solutions. For example,

if Gη = 0 for some nonzero η ∈ Cl, then the solutions to the homogeneous problem are

the functions u = Re b(Eψ0)η for any scalar analytic function ψ0 ∈ C1,µ
(λ)

.

b) If detG ̸= 0, then the condition ∫
R
g(t)dt = 0 (12)

is necessary and sufficient for the solvability of an inhomogeneous problem in the class

C1,µ
(λ)

, 0 < λ < 1. Under the additional assumption u(∞) = 0 its solution is unique and

is given by the formula

u(z) = Re
1

π

∫
R
b[t− z]−1G−1f(t)dt, f(x) =

∫ x

−∞
g(t)dt. (13)

We introduce the concept of the conjugate function v to the solution u of equation

(1). It is determined by the line integral

v(z) = v(z0) +

∫ z

z0

(a21ux + a22uy)dx− (a11ux + a12uy)dy.

For v we get the representation

v = Re cϕ, c = a21b+ a22bJ. (14)

Together with u(z) this function also belongs to the class C1,µ
(λ)

, 0 < λ < 1. If we put(
b b
c c

)−1

=

(
b2 c2
b2 c2

)
for its inverse matrix, we can write the formula

ϕ = 2(b2u+ c2v). (15)

From (11) we can go to the “integrated” boundary value problem

(pu+ qv)
∣∣
R = f (16)

in class C1,µ
(λ)

, 0 < λ < 1, where p1, q1 are again denoted by p, q.

As a simple example, consider for system (1) the boundary value problem

u(x, 0) + u(−x, 0) = f(x), v(x, 0) + v(−x, 0) = g(x), (17)

where f, g are given even l -vector functions.

Theorem 3. Problem (1), (17) in class u+ iv ∈ Cµ
(λ)

(D, F ), 0 < λ < 1, is uniquely

solvable and its solution is given by the formula

u(z) = Re
1

πi

∫
R
b[t− z]−1h(t)dt, h = b2f + c2g, (18)

where matrices b2, c2 appear in (15).

In [2], the Fredholm solvability of boundary value problems for elliptic systems was
studied. In [3], the Fredholm solvability of boundary value problems for high-order

elliptic equations was studied and the index formula for the problem was calculated.
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Let Ei be a (quasi) symmetric Banach space on (0, 1), i = 1, 2. We define the

pointwise product space E1 ⊙ E2 as

(18) E1 ⊙ E2 = {f : f = f1f2, fi ∈ Ei, i = 1, 2}
with a functional ∥f∥E1⊙E2

defined by

∥f∥E1⊙E2 = inf{∥f1∥E1∥f2∥E2 : f = f1f2, fi ∈ Ei, i = 1, 2}.

Definition 1. Let E be a symmetric (quasi) Banach space on (0, 1). The funda-

mental function φE is defined by φE(t) = ∥χA∥, where t ∈ [0, 1) and A is a measurable
subset of (0, 1) with m(A) = t.

Let MφE (0, 1) be the usual Marcinkiewicz spaces with norms defined by

MφE (0, 1) = {f ∈ L0(0, 1) : ∥f∥MφE
= sup

t>0

φE(t)

t

∫ t

0
µs(f)ds <∞}.

Definition 2. Let E be a symmetric (quasi) Banach space on (0, 1). We call

MφE (0, 1) is weak version of E and denote it by E∞.

The classical weak Lp-space Lp,infty(0, 1) (1 ≤ p < ∞) is defined as the set of all

measurable functions f on (0, 1) such that

∥f∥Lp,∞ = sup
t>0

t
1
p µt(f) <∞.

For p > 1, Lp,∞(0, 1) can be renormed as a Banach space by

f 7→ sup
t>0

t
−1+ 1

p

∫ t

0
µs(f)ds.

If E = Lp(0, 1) (1 < p <∞), then E∞ = Lp,∞(0, 1). If (Lp(0, 1))∞ = Lp(0, 1). But for

0 < p ≤ 1, if f ∈ (Lp(0, 1))∞, then

∥f∥(Lp(0,1))∞ = sup
t>0

t
1
p
−1
∫ t

0
µs(f)ds =

∫ 1

0
µs(f)ds = ∥f∥1.

Hence, (Lp(0, 1))∞ = L1(0, 1) and it is different from the classical weak Lp-space.

Let Φ be an N-function, we define

aΦ = inf
t>0

tΦ′(t)

Φ(t)
and bΦ = sup

t>0

tΦ′(t)

Φ(t)
.

If bΦ < ∞, then the fundamental function of Orlicz space LΦ(0, 1) on (0, 1) equipped

with the Luxemburg norm, is the following

φLΦ(Ω)(t) = 1/Φ−1(
1

t
), t > 0.

Hence, if E = LΦ(0, 1) and 1 < aΦ ≤ bΦ <∞, then E∞ = LΦ,∞(0, 1).

Proposition 1. Let Ei be symmetric (quasi) Banach space on (0, 1) which is

αi-convex for some 0 < αi < ∞ (i = 1, 2). Then E1 and E2 can be equipped with
equivalent quasi norms ∥ · ∥1 and ∥ · ∥2, respectively, so that φE1⊙E2

(t) = φE1
(t)φE2

(t),

for any t ≥ 0.

Theorem 1. Let Ei be symmetric (quasi) Banach space on (0, 1) which is αi-

convex for some 0 < αi < ∞ (i = 1, 2) and 0 < a < 1. If x ∈ ((E
(a)
1 )∞)(

1
a
)(M) and

y ∈ ((E
(1−a)
2 )∞)

( 1
1−a

)
(M), then xy ∈ (E1 ⊙ E2)∞(M) and the following Holder type

inequality holds

∥xy∥(E1⊙E2)∞ ≤ ∥x∥
((E

(a)
1 )∞)

( 1
a

)∥y∥
((E

(1−a)
2 )∞)

( 1
1−a

) .
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Theorem 2. Let E be symmetric (quasi) Banach space on (0, 1). Then we have

the following Chebyshev type inequality

tφE(τ(e(t,∞)(|x|))) ≤ ∥x∥E∞, ∀x ∈ E∞(M).
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It is well known that initial boundary value problems for the wave equation often

arise in the context of physical systems that describe the propagation of waves, such as
sound waves, water waves, electromagnetic waves, and others. These problems typically

involve a combination of initial conditions and boundary conditions for a differential

equation.

Problems with nonlocal boundary conditions represent a special class of initial bound-

ary value problems in which the boundary conditions simultaneously connect the values

of the desired solution (and its derivatives) at different points of the boundary. Such
conditions can occur in a variety of physical and mathematical contexts and can describe

more complex physical phenomena and boundary conditions.

The report discusses the formulation of new initial-boundary value problems for a two-
dimensional wave equation with nonlocal conditions respect to spatial variables, which

are multidimensional generalizations of the Samarsky-Ionkin problem. The domain of

consideration of the problem is a circular cylinder Q with its axis along the t axis.
Classical initial conditions are set at the base of the cylinder and new nonlocal boundary

conditions on the spatial (lateral) boundaries of the cylinder.

Let Ω = {(r, φ) : 0 ≤ r < 1, 0 ≤ φ ≤ 2π} be the unit circle, Q = {(r, φ, t) : 0 ≤ r <
1, 0 ≤ φ ≤ 2π, 0 < t < T} is a right circular cylinder.

We will consider a new nonlocal boundary value problem for the two-dimensional

wave equation:

utt(r, φ, t)−∆u(r, φ, t) = f(r, φ, t), (r, φ, t) ∈ Q, (1)

where ∆ is the Laplace operator in polar coordinates (r, φ).

We will use classical initial conditions

u|t=0 = τ(r, φ), ut|t=0 = ν(r, φ), (r, φ) ∈ Ω, (2)

and nonlocal boundary conditions on the lateral boundary of a circular cylinder

u(1, φ, t)− αu(1, 2π − φ, t) = 0, 0 ≤ φ ≤ π, 0 ≤ t ≤ T, (3)

∂u

∂r
(1, φ, t)−

∂u

∂r
(1, 2π − φ, t) = 0, 0 ≤ φ ≤ π,≤ t ≤ T. (4)

Here α ̸= 1 is a fixed real number.

We take the right side of the equation and the initial conditions from the following
“standard” smoothness class for hyperbolic problems: f(r, φ, t) ∈ C1+ϵ(Q̄); τ(r, φ) ∈
C2+ϵ(Ω̄); ν(r, φ) ∈ C1+ϵ(Ω̄). Additionally, we require that τ(r, φ) and ν(r, φ) satisfy
boundary conditions (3), (4).

To solve the initial-boundary-value problem (1)-(4), we apply the method of reducing
to a sequential solution of two initial-boundary value problems with self-adjoint boundary

conditions in the spatial variable, proposed in [1] for the case of one-dimensional parabolic
initial-boundary value problems with non-reinforced regular boundary value problems
conditions.

The main result of the work is the proof of the correctness of the formulated problem
in the classical sense.
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On the Compactness of the Commutator of the Riesz
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Nurzhan BOKAYEV1,a, Dauren MATIN1,b Aidos ADILKHANOV1,c

1 L.N. Gumilyov Eurasian National University, Astana, Kazakhstan.
E-mail: abokayev2011@yandex.ru, bd.matin@mail.ru

cadilkhanov-kz@mail.ru

In this work a sufficient conditions for the boundedness and compactness of the
commutator of the Riesz Potential in global Morrey-type spaces are obtained.

definition. Let 0 < p, θ ≤ ∞ and let w be a nonnegative measurable function on
(0,∞). The general global Morrey-type space GMpθ,w(·) ≡ GMpθ,w(·)(Rn) is defined as

the set of all functions f ∈ Lloc
p (Rn) with finite quasi-norm

∥f∥GMpθ,w(·)
≡ sup

x∈Rn

∥∥∥w(r) ∥f∥Lp(B(x,r))

∥∥∥
Lθ(0,∞)

,

where B(t, r) the ball with center at the point t and of radius r.

We denote by Ωpθ the set of all functions that are nonnegative, measurable on (0,∞),

not equivalent to 0 and such, that for some t > 0 (and therefore for all t > 0)

∥w(r)r
n
p ∥Lθ(0,t)

<∞, ∥w(r)∥Lθ(t,∞) <∞.

The space GMpθ,w(·) is non-trivial, that is, it consists not only of functions equivalent

to 0 in Rn if and only if w ∈ Ωpθ.

We consider the Riesz Potential Iαf(x) =
∫
Rn

f(y)

|x−y|n−α dy, 0 < α < n.

For a function b ∈ Lloc(Rn) by Mb denote multiplier operator Mbf = bf , where f -

measurable function. Then the commutator between Iα and Mb is defined by

[b, Iα] =MbIα − IαMb =

∫
Rn

(b(x)− b(y)) f(y)

|x− y|n−α
dy.

Let u, v be weight functions. Denote by

H∗g(t) :=

∫ ∞

t
g(s)ds, g ∈ M+,

the Hardy operator,

W (t) :=

∫ t

0
w(t)dw,

U∗(t) :=

∫ ∞

t
u(t)du,

V∗(t) :=

∫ ∞

t
v(t)dv.

Theorem 1. Let 1 < p ≤ q < ∞, 0 < α < n and b ∈ BMO(Rn), 1 < p < n
α
, 1

q
=

1
p
− α

n
, w1, w2 ∈ Ωθ and let the functions w1, w2 satisfy the conditions

A∗
0 := supt>0

(∫ ∞

t

∫ ∞

τ
(1 + ln

τ

r
)drw1(τ)dτ

) 1
q
(∫ ∞

t
v(t)dv

)− 1
p

<∞,

A∗
1 := supt>0W

1
q

2 (t)

(∫ ∞

t
(
U∗(τ)

V∗(τ)
)p

′
v(τ)dτ

) 1
p′
<∞.

Then the commutator [b, Iα] is the boundedness operator from GMw1
pθ to GMw2

qθ .
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Theorem 2. Let 1 < p ≤ q < ∞, 0 < α < n and b ∈ VMO(Rn), 1 < p < n
α
,

1
q
= 1

p
− α

n
, w1, w2 ∈ Ωθ satisfy the conditions of Theorem 1.

Then the commutator [b, Iα] is a compact operator from GMw1
pθ to GMw2

qθ .

Remark. The compactness of the commutator of the Riesz potential in Morrey space

was considered in [1]. The compactness of sets in global Morrey-type spaces was studied
in [2], [3].
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In this paper, we consider the inverse problem of finding a pair of functions {p(t), u(x, t)}
such that it satisfies the equation

0∂
α
t u = uxx + p(t)f(x, t), (x, t) ∈ DT , (1)

the initial condition

u(x, 0) = φ(x), 0 ≤ x ≤ 1, (2)

the boundary conditions

u(0, t) = 0, ux(0, t) + duxx(1, t) = 0, 0 ≤ t ≤ T, (3)

and the overdetermination condition
1∫

0

u(x, t)dx = E(t), t ∈ [0, T ], (4)

where T > 0, DT = {(x, t) : 0 < x < 1, 0 < t ≤ T}, f, φ are given real-valued

functions, d > 0 is a real constant, 0∂αt u is the Caputo time-fractional derivative of
order α defined in [1] by

0∂
α
t u =

1

Γ(1− α)

t∫
0

∂u(x, s)

∂s

ds

(t− s)α
, 0 < α < 1,

and Γ(·) is the Gamma function.

In the case when α = 1, the inverse problem of finding pairs {p(t), u(x, t)} with the

conditions (2)-(4) for the equation

ut = uxx + p(t)u+ f(x, t), (x, t) ∈ DT

is considered in [2].

The well-posedness of the inverse problem (1)-(4) is shown by Fourier expansion in

terms of eigenfunctions of the spectral problem, which has a spectral parameter in the

boundary condition. Also, for the well-posedness of the problem (1)-(4), the properties
of the Volterra integral equation of the second kind have been used. One of the main
results of this work is that the existence and uniqueness of the solution of the problem
(1)-(4) has been proved without using the orthogonality condition on the input data.
The continuous dependence of the solution of the problem (1)-(4) on the data has been
proved.
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In this talk a new nonlocal boundary value problem for an equation of the mixed
type is formulated. This equation is parabolic-hyperbolic and belongs to the first kind

because the line of type change is not a characteristic of the equation. Nonlocal condition

binds points on boundaries of the parabolic and hyperbolic parts of the domain with
each other. This problem is generalization of the well-known problems of Frankl type.

A boundary value problem for the heat equation with conditions of the Samarskii-Ionlin

type arises in solving this problem. Unlike the existing publications of the other authors
related to the theme it is necessary to note that in this papers the nonlocal problems

were considered in rectangular domains. But in our formulation of the problem the

hyperbolic part of the domain coincides with a characteristic triangle. Unique strong
solvability of the formulated problem is proved.

Let Ω ⊂ R2 be a finite domain bounded for y > 0 by the segments AA0, A0B0, B0B,
A = (0, 1), B0 = (1, 1), B = (1, 0) and for y < 0 by the characteristics AC : x+ y = 0

and BC : x− y = 1 of an equation of the mixed parabolic-hyperbolic type

Lu =


ux − uyy , y > 0

uxx − uyy , y < 0

 = f(x, y). (1)

This is the equation of the mixed type. The equation refers to the first kind because the

line of change of type y = 0 is not a characteristic of the equation.

By W l
2 (Ω) = Hl(Ω) we denote the space of S.L. Sobolev with the scalar product

(·, ·)l and the norm ∥·∥l, W 0
2 (Ω) = L2 (Ω); Ω1=Ω

⋂
{y > 0}, Ω2=Ω

⋂
{y < 0}.

In Ω consider the following nonlocal boundary value problem being the generalization

of an analogue of the Frankl problem for the parabolic-hyperbolic equation (1).

Problem F . Find a solution to Eq. (1) satisfying classical boundary conditions

u|AA0
= 0, uy |A0B0

= 0 (2)

and a nonlocal boundary condition

u (θ (t)) = au (θ0 (t)) + bu (θ1 (t)) , 0 ≤ t ≤ 1, (3)

where θ (t) = (t, 1), θ0 (t) =
(
t
2
,− t

2

)
, θ1 (t) =

(
t+1
2
, t−1

2

)
; a, b are arbitrary numbers.

It is easy to see that θ (t) ∈ A0B0, θ0 (t) ∈ AC, θ1 (t) ∈ BC. Therefore the new
nonlocal boundary condition (3) binds with each other values of the sought-for solution
on the parabolic part of the boundary A0B0 and on the hyperbolic parts of the boundary
of the domain (at the characteristics AC and BC).

Theorem. Let a + b ̸= 0. Then for any function f ∈ L2 (Ω) there exists a unique

strong solution u(x, y) to the problem F . This strong solution belongs to the class

H1 (Ω) ∩H1,2
x,y (Ω1) ∩ C

(
Ω
)
, and satisfies the inequality

∥u∥1 ≤ C ∥f∥0.

Note that in the special case when a = 1+α and b = 1−α (α is a real number), the
problem F was considered in our paper [1].
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It is known [1] that the two-dimensional sphere S in the three-dimensional space R3

represents a Riemannian manifold. The Laplace-Beltrami operator ∆S on the indicated
sphere in a standard way is introduced. Since the sphere S is a smooth manifold without

boundary, the problem is well defined.

u(x)−∆Su(x) = f(x), x ∈ S.

The sphere S of the closed curve C is split into two non-intersecting parts S2 and S1

[2],[3].

The following Dirichlet problem studied in the work [2]

−∆Su(x) = 0, x ∈ S2, u(x) = g(x), x ∈ C.

Using the potentials of a simple and double layer, the existence of a solution to the

indicated Dirichlet problem is proved.

Another problem is studied in the work [3]

−∆Su(x) = ω(x), x ∈ S2, (1)

−
1

2
u(x) +

∫
C
u(y)curlSε(x, y) · t⃗(y)dsy−

−
∫
C
ε(x, y)curlSu(y) · t⃗(y)dsy = 0, x ∈ C. (2)

Here ε(x, y) = − 1
4π

ln |1−⟨x, y⟩| represents the fundamental solution of the Laplace-

Beltrami operator. It is shown in the work [3], that the solution to problem (1),(2) is
written as

u(x) =

∫
S2

ε(x, y)ω(y)dσy , x ∈ S2.

We also note the paper [4], where a boundary value problem for the Laplace-Beltrami

operator on a punctured sphere was studied. A punctured sphere is a sphere from which
one point has been removed. In this case, the problem arises: What additional conditions

must the solution at the remote point satisfy in order to guarantee the uniqueness of the

solution?

In the present paper, a fixed arc from the sphere is removed and the same question

is studied: what additional conditions must the solution on the removed arc satisfy in
order to guarantee the uniqueness of such a solution?

To solve this problem we introduce a class of the functionW 2
2,loc(S20) =

⋃
δ>0

W 2
2 (S2δ).

As well as necessary to introduce a class of the function

W 2
2L(S20) = {h ∈W 2

2,loc(S20) : lim
δ→0

∫
S20

h(y)dσy = 0,

(Ldh)(x)− (Lsh)(x) ∈ H(S20),∆Sh ∈ L2(S), }.

Here Lsh and Ldh are single and double layer potentials respectively, h(x) is an
arbitrary function from the class W 2

2L(S20). Since ∆Sh ∈ L2(S), that T (x) ∈ W 2
2 (S)
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and ∆ST = ∆Sh. Thus, T (x) represents a regularization of the function h(x). In fact, the

function h(x) could have singularities on the curve C. At the same time, its regularization
T (x) no longer has singularities on the full sphere S, that is, it belongs to the space

W 2
2 (S).

Lemma 1. An arbitrary element h of the class W 2
2L(S20) for x ∈ S20 can be

represented as h(x) = T (x)+(Lsh)(x)−(Ldh)(x), where T (x) is a function fromW 2
2 (S).

Now we can formulate the statement.

Theorem 1. For any function f ∈ L2(S) and any function g from H(S20), the

problem

−∆Su(x) = f(x), x ∈ S20,

(Ldu)(x)− (Lsu)(x) = g(x), x ∈ S20

has a unique solution in the class W 2
2L(S20).
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Global Existence and Blow-up of Solutions to Porous
Medium Equation and Pseudo-Parabolic Equation
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In this talk, we discuss a global existence and blow-up of the positive solutions to
the initial-boundary value problem of the nonlinear porous medium equation and the

nonlinear pseudo-parabolic equation related to the Baouendi-Grushin operator. Our
approach is based on the Poincaré inequality from [1] for the Baouendi-Grushin vector

fields and the concavity argument.

This talk is based on the joint research with Michael Ruzhansky (Ghent University,
Belgium).
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On Pantograph Delay Differential Equations
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In this talk, we prove by means of some fixed point theorems, the existence and
uniqueness of solutions for a class of fractional pantograph delay differential equations

with initial conditions. Then, we investigate the stability and Ulam-Hyers stability for

this type of delay differential equation. Furthermore, we apply the Adomian decompo-
sition method to analyze numerically some examples.
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It is well known that system of eigenfunctions of an operator defined formally by a

self-adjoint differential expression with arbitrary self-adjoint boundary value conditions,

providing a discrete spectrum, forms an orthogonal basis of the space L2. In the case
when the spectral parameter is also present in the boundary value condition, consid-

eration of the problem in the form of an operator in L2 becomes impossible, since the

spectral parameter should not change the domain of the operator. Problems of this type
naturally arise when we solve (by the method of separation of variables) initial-boundary

value problems for evolutionary equations, when the boundary value condition includes
derivatives of the solution with respect to the time variable. For such problems, based on

the theory developed by A.A. Shkalikov [1], it is known that when we remove (some finite

number of) elements, the system of root vectors of such a problem can already form a
basis with brackets. However, the question of whether the system forms an unconditional

basis must be investigated for each problem separately. We consider a spectral problem

with a linear occurrence of the spectral parameter in one of the boundary conditions

l(u) ≡ −u′′(x) = λu(x), 0 < x < 1, (1)

u′(0) = 0, u′(1) = λ(u(0) + u(1)). (2)

Representing the general solution of the equation (1) by the formula:

u(x, λ) = C1 cos
√
λx+ C2 sin

√
λx

and satisfying it by the boundary value conditions (2), we obtain a linear system with

respect to the coefficients C1 and C2:{
C2 = 0,

C1

(√
λ
[√
λ(1 + cos

√
λ) + sin

√
λ
])

= 0.
(3)

Therefore, the characteristic determinant of the problem (1), (2) has the form

∆(λ) =
√
λ(1 + cos

√
λ) + sin

√
λ = cos

√
λ

2

(
√
λ cos

√
λ

2
+ sin

√
λ

2

)
.

Solving the equation ∆(λ) = 0, we have two series of eigenvalues

cos

√
λ

2
= 0 ⇒

√
λk = (2k + 1)π ⇒ λ

(1)
k = ((2k + 1)π)2;

√
λ cos

√
λ

2
+ sin

√
λ

2
= 0 ⇔ cot

√
λ

2
= −

1
√
λ
.

Due to the Rouche theorem, we get
√
λ

2
=
(π
2
+ kπ

)
+
δk

2
⇒

√
λk = (2k + 1)π + δk,

δk are bounded. Let us prove that δk → 0.

cot

(
π

2
+ kπ +

δk

2

)
= −

1

(2k + 1)π + δk
,
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cot

[(π
2
+ kπ

)
+
δk

2

]
=

cot
(π
2
+ kπ

)
· cot

δk

2
− 1

cot
(π
2
+ kπ

)
+ cot

δk

2

=
−1

cot
δk

2

=
1

(2k + 1)π + δk
⇔

⇔ tan
δk

2
=

1

(2k + 1)π + δk
= O

(
1

k

)
⇒

⇒ δk = O

(
1

k

)
. Thus,

√
λk = (2k + 1)π +O

(
1

k

)
, that is λ

(1)
k = ((2k + 1)π + δk)

2.

λ
(1)
k , λ

(2)
k are simple (single) eigenvalues of the problem (1)-(2). From the system

of equations (3): C2 = 0, therefore, from the general solution of the equation (1), the

system of eigenfunctions of the problem (1)-(2) is explicitly calculated and has the form:

u
(1)
k (x) = cos((2k + 1)π)(x),

u
(2)
k (x) = cos((2k + 1)π + δk)(x), k = 0, 1, 2, 3, . . . , where, δk = O

(
1

k

)
. (4)

Due to the asymptotics of δk, by removing one element from this system, we obtain
the complete and minimal system in L2(0, 1). For large enough k >> 1, this system does

not form an unconditional basis, since two series of eigenfunctions u
(1)
k (x) and u

(2)
k (x)

”stick together”, although according to the results of A.A. Shkalikov [1], this system

forms a Riesz basis with brackets in L2(0, 1).

We introduce the following auxiliary system of functions:

y
(1)
k (x) = u

(1)
k (x),

y
(2)
k (x) =

1

δk
(u

(2)
k (x)− u

(1)
k (x)), k = 0, 1, 2, 3, . . . , (5)

that is, the auxiliary system of functions has the form

y
(1)
k (x) = cos(2k + 1)πx,

y
(2)
k (x) = −

sin(δkx)

δk
sin(2k+1)πx+

cos(δkx)− 1

δk
cos(2k+1)πx, k = 0, 1, 2, 3, . . . . (6)

We consider the system of functions

{φ(1)
k (x) = cos(2k + 1)πx, φ

(2)
k (x) = −x sin(2k + 1)πx}∞k=0. (7)

These functions are eigenfunctions (φ
(1)
k (x)) and adjoint functions (φ

(2)
k (x)) of the

Samarsky-Ionkin type problem:

−φ′′(x) = λφ(x), 0 < x < 1,

φ(0) + φ(1) = 0, φ′(1) = 0.

As shown in [2], the system of eigenfunctions and associated functions of this problem
forms the Riesz basis in L2(0, 1).

Let us show that the system of functions {y(1)k (x), y
(2)
k (x)} and {φ(1)

k (x), φ
(2)
k (x)} are

quadratically close.

Indeed, we get:
∞∑

k=1

∥φk − yk∥2 =
∞∑

k=1

∥φ(2)
k − y

(2)
k ∥2.

By direct calculation, we obtain the estimation:

∥φ(2)
k − y

(2)
k ∥ =

=

∥∥∥∥−x sin(2k + 1)πx+
sin(δkx)

δk
sin(2k + 1)πx−

cos(δkx)− 1

δk
cos(2k + 1)πx

∥∥∥∥ =

=

∥∥∥∥sin(2k + 1)πx

(
sin(δkx)

δk
− x

)
−

cos(δkx)− 1

δk
cos(2k + 1)πx

∥∥∥∥ ≤
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≤
∥∥∥∥ sin(δkx)δk

− x

∥∥∥∥+ ∥∥∥∥1− cos(δkx)

δk

∥∥∥∥ =∥∥∥∥∥ 1

δk

(
δkx−

δ3kx
3

3!
+O(δ5kx

5)

)
− x

∥∥∥∥∥+
∥∥∥∥∥ 1

δk

(
1− 1 +

δ2kx
2

2!
−O(δ4kx

4)

)∥∥∥∥∥ =

=

∥∥∥∥x− x− δ2k
x3

3!
+O(δ4kx

5)

∥∥∥∥+ ∥∥∥∥δk x22! −O(δ3kx
4)

∥∥∥∥ ≤ O(δk).

Taking into account the asymptotics of δk = O

(
1

k

)
, we obtain

∞∑
k=1

∥φk − yk∥2 =
∞∑

k=1

∥φ(2)
k − y

(2)
k ∥2 ≤ C ·

∞∑
k=1

1

k2
<∞,

that is the system of functions {y(1)k (x), y
(2)
k (x)} and {φ(1)

k (x), φ
(2)
k (x)} are quadratically

close.

Thus, we have proved

Theorem. The system of eigenfunctions (4) of the spectral problem (1)-(2) does not
form an unconditional basis in L2(0, 1). The auxiliary system of functions (5) forms an

unconditional basis in L2(0, 1).
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The talk discusses a new type of boundary value problem involving an equation of
mixed type, specifically one that is parabolic-hyperbolic and belongs to the first kind

due to the absence of characteristic lines. The equation under consideration is of mixed

type, meaning it combines characteristics of both parabolic and hyperbolic equations.
Such equations are characterized by different types of behavior in different regions of the

domain. This problem involves nonlocal boundary conditions. Nonlocal conditions are
those that involve relationships between points on the boundaries of different parts of the

domain. In this case, it appears to relate points on the boundaries of the parabolic and

hyperbolic parts of the domain. The problem discussed in the talk is a generalization of
problems of Frankl type. Frankl type problems are a specific class of mathematical prob-

lems that typically involve boundary value problems for partial differential equations.

Unlike previous publications, which often considered nonlocal problems in rectangular
domains, this talk’s problem formulation involves a domain where the hyperbolic part

coincides with a characteristic triangle. The talk concludes by claiming the unique strong

solvability of the formulated problem. This means that there exists a unique solution
that is well-behaved and satisfies the given conditions. In summary, the talk introduces

and discusses a novel boundary value problem involving a mixed-type equation with

nonlocal boundary conditions.

Let Ω ⊂ R2 be a finite domain bounded for y > 0 by the segments AA0, A0B0, B0B,

A = (0, 1), B0 = (1, 1), B = (1, 0) and for y < 0 by the characteristics AC : x+ y = 0
and BC : x− y = 1 of an equation of the mixed parabolic-hyperbolic type

Lu =


ux − uyy , y > 0

uxx − uyy , y < 0

 = f(x, y). (1)

This is the equation of the mixed type. The equation refers to the first kind because the
line of change of type y = 0 is not a characteristic of the equation.

By W l
2 (Ω) = Hl(Ω) we denote the space of S.L. Sobolev with the scalar product

(·, ·)l and the norm ∥·∥l, W 0
2 (Ω) = L2 (Ω); Ω1=Ω

⋂
{y > 0}, Ω2=Ω

⋂
{y < 0}.

In Ω consider the following nonlocal boundary value problem being the generalization
of an analogue of the Frankl problem for the parabolic-hyperbolic equation (1).

Problem F . Find a solution to Eq. (1) satisfying classical boundary conditions

u|AA0
= 0, uy |A0B0

= 0 (2)

and a nonlocal boundary condition

βu (θ (t)) = (1 + α)u (θ0 (t)) + (1− α)u (θ1 (t)) , 0 ≤ t ≤ 1, (3)

where θ (t) = (t, 1), θ0 (t) =
(
t
2
,− t

2

)
, θ1 (t) =

(
t+1
2
, t−1

2

)
; α, β are arbitrary numbers.

It is easy to see that θ (t) ∈ A0B0, θ0 (t) ∈ AC, θ1 (t) ∈ BC. Therefore the new
nonlocal boundary condition (3) binds with each other values of the sought-for solution

on the parabolic part of the boundary A0B0 and on the hyperbolic parts of the boundary

of the domain (at the characteristics AC and BC).
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Theorem. Let β ̸= 0. Then for any function f ∈ L2 (Ω) there exists a unique

strong solution u(x, y) to the problem F . This strong solution belongs to the class

H1 (Ω) ∩H1,2
x,y (Ω1) ∩ C

(
Ω
)
, and satisfies the inequality

∥u∥1 ≤ C ∥f∥0.

Note that in the special case when β = 1, the problem F was considered in paper of

G.Dildabek [1].
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Let Ω be a bounded domain in Rn with a sufficiently smooth boundary ∂Ω. We

discuss questions about the regularity of the solution the initial-boundary problem

∂ t(t
β∂ tu)−∆u = f in Q = Ω× (0, T ), (1)

u = 0 on Σ = ∂Ω× (0, T ), (2)

u(x, 0) = 0, lim
t→+0

tβ∂ tu(x, t) = 0 in Ω, (3)

which was studied in the dissertation of N. Kaharman [1]. In particular, they established
the following result:

Theorem 1. Let β ∈ [0, 1), f ∈ L2(Q), (−∆)1−νf ∈ L2(Q). Then problem (1)–(3)
is uniquely solvable, and there is an a priori estimate

∥u∥2
W

2,2

2,tβ
(Q)

≡ ∥tβ∂ tu∥2W1
2 (0,T ;L2(Ω))

+ ∥u∥2
L2(0,T ;W2

2(Ω)∩
◦
W1

2(Ω))

≤ C
[
∥f∥2

L2(Q)
+ ∥(−∆)1−νf∥2

L2(Q)

]
, where ν =

1− β

2− β
, (4)

i.e. the parameter ν changes within the half-open segment: ν ∈ (0, 1/2].

Remark 1. If β = 0, then equation (1) does not degenerate. However, as the

degeneracy of equation (1) ”increases” (that is, when parameter β increases from 0 to
1), the requirement for the smoothness of function f on the right side of equation (1)

also increases accordingly.

According to Theorem 1 and the results of [2, 3], we have

Theorem 2. Let β = 0 and one of the following conditions is met

f ∈ L2(Q), ∂ tf ∈ L2(Q), (4)

or

f ∈ L2(Q), (−∆)1/2f ∈ L2(Q). (5)

Then problem (1)–(3) (with a non-degenerate equation) is uniquely solvable in the
space

u(t) ∈W 2,2
2,1(Q) ≡

{
v(t)| v(t) ∈ L2(0, T ;W 2

2(Ω)∩
◦
W

1
2(Ω)), ∂2t v(t) ∈ L2(Q)

}
,

and we have the corresponding a priori estimate

∥u∥2
W

2,2
2,1(Q)

≤ C
[
∥f∥2

L2(Q)
+ ∥∂ tf∥2L2(Q)

]
, (6)

or

∥u∥2
W

2,2
2,1(Q)

≤ C
[
∥f∥2

L2(Q)
+ ∥(−∆)1/2f∥2

L2(Q)

]
. (7)

Note that, in part, the answers to these questions can be obtained using the theory
developed in [2, 4]. We present one of the results following from ([2], chapter 5, Theorem

8.1, Remark 8.1 and Proposition 8.1).

Theorem 3. Let the function f be given by the conditions

f ∈ L2(0, T ;W 2
2(Ω)), ∂3t f ∈ L2(Q), (8)

f(x, 0) = ∂ tf(x, 0) = ∂ 2
t f(x, 0) = 0. (9)

Bahçeşehir University (Türkiye), Ghent University (Belgium),
Institute of Mathematics and Mathematical Modeling (Kazakhstan)



Functional Analysis in Interdisciplinary Applications, FAIA2023 47

Then the solution u(x, t) of problem (1)–(3) satisfies the inclusions

u ∈W 4,4
2,1(Q) ⇔ u, ∂tu ∈ L2(0, T ;W 4

2(Ω)∩
◦
W

1
2(Ω)), ∂4tu ∈ L2(Q).

The following questions arise:

Question 1. What can be said about the regularity of the solution of problem (1)–(3)
for β = 1 ∪ (1, 2) ∪ 2?

Question 2. Is it possible to formulate the conditions of Theorem 1 in terms of

the smoothness of the function f(x, t) with respect to the variable t, as it was done in
Theorem 2 for the case β = 0?

Question 3. Is it possible to formulate conditions (8)–(9) of Theorem 3 in terms of

the smoothness of the function f(x, t) with respect to the variable x?

In our report, we provide answers to these and other related questions.
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Let Lp1p2 , 1 ≤ pi ≤ ∞, i = 1, 2 be the set of measurable functions of two variables

f(x1, x2), 2π - periodic in each variable, for which ∥f∥p1p2 = ||{||f ||p1}||p2 <∞, where

∥f∥pi =

 2π∫
0

|f |pidxi


1
pi

, if 1 ≤ pi <∞,

∥f∥pi = sup
0≤xi≤2π

|f |, if pi = ∞.

Let L0
p1p2

be the space of functions f ∈ Lp1p2 such that
2π∫
0

f(x1, x2)dx1 = 0 for almost all

x2 and
2π∫
0

f(x1, x2)dx2 = 0 for almost all x1.

For the function f ∈ Lp1p2 , we define the fractional differences of positive order α1

and α2 with steps h1 and h2 respectively, by variables x1 and x2 as follows:

∆α1
h1

(f) =
∞∑

ν1=0

(−1)ν1
(
α1
ν1

)
f(x1 + (α1 − ν1)h1, x2),

∆α2
h2

(f) =

∞∑
ν2=0

(−1)ν2
(
α2
ν2

)
f(x1, x2 + (α2 − ν2)h2),

where (αν ) = 1 for ν = 0, (αν ) = α for ν = 1, (αν ) =
α(α−1)...(α−ν+1)

ν!
for ν ≥ 2.

Denote ([3]) by ωα1,α2 (f, δ1, δ2)p1p2 the mixed modulus of smoothness of positive
orders α1 and α2, respectively, in the variables x1 and x2 of a function f ∈ Lp1p2 , that

is,

ωα1,α2 (f, δ1, δ2)p1p2 = sup
|hi|≤δi,i=1,2

||∆α1
h1

(
∆α2

h2
(f)
)
||p1p2 .

The following (p, q)-inequality between moduli of smoothness in different metrics,

nowadays called sharp Ulyanov type inequalities, is known (see [5]):

ω1(f, δ)
(1)
q ≪

( δ∫
0

(
t−θω1(f, t)

(1)
p

)q∗ dt
t

) 1
q∗
,

where 1 ≤ p < q ≤ ∞, θ = 1
p
− 1

q
. For the Lebesgue spaces, Ulyanov type inequalities in

the one-dimensional case have been studied for the moduli of smoothness of any positive
order by many authors, in particular, Ulyanov [5], V.I. Kolyada [1], Yu. Kolomoitsev,

S. Tikhonov [2], B. Simonov [4].

Theorem 1. Let f ∈ L0
p1p2

, where 1 < p1 < q1 < ∞ or 1 = p1 < q1 = ∞ and

1 < p2 < q2 <∞ or 1 = p2 < q2 = ∞. Let for αi > 0, δi ∈ (0, 1), i = 1, 2, we have

ωα1,α2

(
f, δ1, δ2

)
q1q2

≪

( δ2∫
0

( δ1∫
0

(
t
− 1

p1
+ 1

q1
1 t

− 1
p2

+ 1
q2

2 ωα1+
1
p1

− 1
q1

,α2+
1
p2

− 1
q2

(f, t1, t2)p1p2

)q∗1 dt1
t1

) q∗2
q∗1
dt2

t2

) 1
q∗2 .

Theorem 2.Let f ∈ L0
p1p2

, where 1 < p1 < q1 < ∞ or 1 = p1 < q1 = ∞ and

1 < p2 < q2 < ∞ or 1 = p2 < q2 = ∞. Let for αi > 0, ρi ≥ 0, δi ∈ (0, 1), i = 1, 2. we
have

ωα1,α2

(
f (ρ1,ρ2), δ1, δ2

)
q1q2

≪
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( δ2∫
0

( δ1∫
0

(
t
−ρ1− 1

p1
+ 1

q1
1 t

−ρ2− 1
p2

+ 1
q2

2 ωα1+ρ1+
1
p1

− 1
q1

,α2+ρ2+
1
p2

− 1
q2

(f, t1, t2)p1p2

)q∗1 dt1
t1

) q∗2
q∗1
dt2

t2

) 1
q∗2 .
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In the domain Ω̄ = [0, ω]× [0, T ] we considered semi-periodic boundary value problem

for a semi-linear loaded hyperbolic equations:

∂2u

∂x∂t
= A(x, t)

∂u(x, t)

∂x
+A0(x, t)

∂u(x, t)

∂x

∣∣∣∣
x=x0

+ f
(
x, t, u(x, t),

∂u(x, t)

∂t

)
, (1)

u(x, 0) = u(x, T ), x ∈ [0, ω], (2)

u(0, t) = ψ(t), t ∈ [0, T ], (3)

where f : Ω×R2 → R, continuous on Ω̄, ψ(t)− continuously differentiable on [0, T ] and
satisfying the condition ψ(0) = ψ(T ) functions.

Function u(x, t) ∈ C(Ω), having partial derivatives
∂u(x, t)

∂x
∈ C(Ω),

∂u(x0, t)

∂x
∈ C(Ω),

∂u(x, t)

∂t
∈ C(Ω),

∂2u(x, t)

∂x∂t
∈ C(Ω), is called a classical solution of problem (1)-(3), if it

satisfies equation (1) for all (x, t) ∈ Ω and the boundary conditions (2)-(3).

We introduce new unknown functions v(x, t) =
∂u(x, t)

∂x
, w(x, t) =

∂u(x, t)

∂t
, and we

must take into account that v(x0, t) =
∂u

∂x

∣∣∣∣
x=x0

, and problem (1)-(3) is reduced to the

following equivalent problem:

∂v

∂t
= A(x, t)v(x, t) +A0(x, t)v(x0, t) + f(x, t, u(x, t), w(x, t)), (4)

v(x, 0) = v(x, T ), x ∈ [0, ω], (5)

u(x, t) = ψ(t) +

∫ x

0
v(ξ, t)dξ, w(x, t) = ψ̇(t) +

∫ x

0
vt(ξ, t)dξ (6)

To find a solution to the boundary value problem (4)-(6), we use a modification of the
Euler polyline method [1]. Using this method, we obtained conditions for the existence

of boundary value problem (1)-(3). Boundary value problems for loaded differential

equations have been studied by many authors [2-7].
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We consider the following linear two-point boundary value problem for systems of
essentially loaded differential equations with impulse effect:

dx

dt
= A0(t)x+

m∑
i=1

Mi(t) lim
t→θi+0

ẋ(t) +
m∑
i=1

Ai(t) lim
t→θi+0

x(t) + f(t), t ∈ (0, T ), (1)

B0x(0) + C0x(T ) = d, d ∈ Rn, x ∈ Rn, (2)

Bi lim
t→θi−0

x(t)− Ci lim
t→θi+0

x(t) = φi, φi ∈ Rn, i = 1,m. (3)

Here (n×n)-matrices Aj(t), (j = 0,m), Mi(t), (i = 1,m), and n-vector-function f(t)

are piecewise continuous on [0, T ] with possible discontinuities of the first kind at the
points t = θi, (i = 1,m). Bj and Cj , (j = 0,m) are constant (n × n) - matrices, and

φi, (i = 1,m) are constant n vector functions, 0 = θ0 < θ1 < θ2 < . . . < θm−1 < θm <

θm+1 = T .

A solution to problem (1) - (3) is a piecewise continuously differentiable vector func-
tion x(t) on [0, T ] which satisfies the system of essentially loaded differential equations

(1) on [0, T ] except the points t = θi, (i = 1,m), the boundary condition (2), and

conditions of impulse effects at the fixed time points (3).

Impulsive differential equations, that is, differential equations involving impulse ef-

fects, appear as a natural description of observed evolution phenomena of several real

world problems [1]. Problems for impulsive differential equations with loadings and
methods for finding their solutions are considered in [2].

Present work considers a two-point boundary value problem for the system of loaded

ordinary differential equations with impulse effect (1) - (3). Loading points in differential
equation are also the points of impulse effect. According to Dzhumabaev parametrization
method [3] the interval is partitioned into parts, then the values of solution at the initial
points of subintervals are introduced as additional parameters. By the matrices of the
loaded summands, boundary condition, and conditions of impulse effect we construct a
system of linear algebraic equations with respect to parameters. Coefficients and right-
hand side of this system are determined by the solutions of Cauchy problems for linear
ordinary differential equations. A numerical algorithm is offered for solving the problem
(1) - (3).
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Inspired by the work of Badiale-Tarantello [1], in this talk we discuss sharp remainder

formulae for the cylindrical extensions of the improved Hardy inequalities with weights.

For more general p we obtain cylindrical improved Lp-Hardy identities with weights for
all real-valued functions f ∈ C∞

0 (Rn\{x′ = 0}), while in L2 case we have them for any

complex-valued function f ∈ C∞
0 (Rn\{x′ = 0}). Moreover, we show cylindrical Lp-

Hardy inequalities with weights for all complex-valued functions f ∈ C∞
0 (Rn\{x′ = 0}).

As applications, we establish improved Caffarelli-Kohn-Nirenberg type inequalities with

remainder terms. In addition, we also discuss the results in the setting of homogeneous

Lie groups.

This talk is based on the joint research with Nurgissa Yessirkegenov.
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Minimal operators generated by overdetermined boundary conditions for differential
equations are extremely important when describing regular boundary value problems for

differential equations. In addition, for inverse problems of mathematical physics arising
from applications, when determining unknown data, it is necessary to study problems

with overdetermined boundary conditions, including the boundary conditions of mini-

mal operators. Thus, the study of minimal differential operators is of both theoretical
and applied interest. In this paper, a criterion for the regular solvability of the dif-

ferential operator generated by the overdetermined Cauchy problem for the Gellerstedt

equation is established. The proof is based on the Gellerstedt potential, the properties
of solutions to the Goursat problem in the characteristic triangle, and the properties of

special functions. It should be noted that differential operators of mixed type have nu-

merous applications in transonic gas dynamics, the theory of infinitesimal surface bends,
the instantaneous theory of shells with variable sign curvature, magnetodynamics and

hydrodynamics.

Let Ω ⊂ R2 be a domain, bounded by segment AB : y = 0, 0 < x < 1, and by

characteristics AC : x − 2
m+2

(−y)
m+2

2 = 0 and BC : x + 2
m+2

(−y)
m+2

2 = 1 of the

Gellerstedt equation

Lu ≡ −(−y)muxx + uyy = f(x, y). (1)

The overdetermined Cauchy problem is considered: to find a regular solution of (1)
equation in the Ω domain, satisfying the conditions:

u|y=0 = 0,
∂u

∂y

∣∣∣∣
y=0

= 0, (2)

u|
AC: x− 2

m+2
(−y)

m+2
2 =0

= 0, u|
BC: x+ 2

m+2
(−y)

m+2
2 =1

= 0. (3)

Theorem 1. The minimal operator ((1), (2), (3) problem) is invertible in L2 (Ω) if and

only if the following conditions are met

ξ∫
0

dξ1

ξ∫
1

(η1 − ξ1)
2β

(ξ − ξ1)
β (η1 − ξ)β

· f1 (ξ1, η1) dη1 = 0, (4)

ξ∫
0

dξ1

ξ∫
1

η1 − ξ1

(ξ − ξ1)
1−β (η1 − ξ)1−β

· f1 (ξ1, η1) dη1 = 0, (5)

where the function f1 is determined by a given function f(x, y) from (1). In this case,

the solution of overdetermined Cauchy problem is representable by the formula:

u (ξ, η) =

ξ∫
0

dξ1

η∫
1

R (ξ, η, ξ1, η1) · f1 (ξ1, η1) dη1, (6)

where R (ξ, η, ξ1, η1) is the Riemann function of the Goursat problem.
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Bahçeşehir University (Türkiye), Ghent University (Belgium),
Institute of Mathematics and Mathematical Modeling (Kazakhstan)



Functional Analysis in Interdisciplinary Applications, FAIA2023 57

Weighted Hardy-Type Inequalities for Monotone
Functions

Aigerim KALYBAY1,a, Ainur TEMIRKHANOVA2,b

1 KIMEP University, Almaty, Kazakhstan
2 L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

E-mail: akalybay@kimep.kz, bainura-t@yandex.kz

Let I = (0,∞), 1 < p, q <∞ and p′ = p
p−1

. Suppose that v, u and v1−p′ are positive

functions locally integrable on I.

We consider the following Hardy-type inequality ∞∫
0

u(x)

∣∣∣∣∣∣
x∫

0

K(x, t)f(t)dt

∣∣∣∣∣∣
q

dx

 1
q

≤ C

 ∞∫
0

v(x)|f(x)|pdx

 1
p

, (1)

for all functions f ∈ Lp,v(I), where Lp,v(I) is the weighted Lebesgue space such that

∥f∥p,v =

(∞∫
0

v(x)|f(x)|pdx
) 1

p

<∞. Here

Kf(x) =

x∫
0

K(x, t)f(t)dt, x > 0, (2)

is an integral operator with a non-negative kernel K(x, t).

At present, there are many works devoted to Hardy-type inequalities with iterated
operators. Motivated by important applications, all these generalizations of the Hardy

inequality are studied not only on the cone of non-negative functions but also on the cone

of monotone functions. This work discusses new Hardy-type inequalities for operators
with kernels that satisfy less restrictive conditions than those considered earlier. The

presented inequalities have already been characterized for non-negative functions. In

this work, we continue this study but for monotone functions. To achieve the aim, we
use the famous Sawyer duality principle, which gives an equivalence between the Hardy

inequality for monotone functions and some inequality for non-negative functions.
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In a series of studies [1-4], we have developed the approximate heat polynomials
method (HPM) for solving various inverse Stefan-type problems. The HPM, or polyno-

mial Trefftz method [5], was initially described by Appell in 1892 in his paper [6], with

further development in subsequent works [7-11].

The essence of this method lies in constructing an approximate solution that satisfies
the heat conduction equation in the form of a linear combination of heat polynomials.

The unknown coefficients are determined through the minimization of residuals, which
can be achieved through various methods such as the variational method, the least

squares method, or other techniques.

We have investigated the convergence and stability of the HPM through numerous

numerical examples. A novel aspect of this work is the development of the collocation
heat polynomials method for solving inverse Stefan-type problems.
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This research introduces a mathematical framework that characterizes the heat dy-
namics occurring during the vaporization of metal in electrical contacts. The study

establishes an arc erosion model for micro-asperities when in a liquid state, employing a

one-phase Stefan problem approach. The investigation addresses two scenarios involving
the impact of Joule heating on a generalized heat equation. By leveraging the similarity

principle, the problems are simplified into ordinary differential equations for solution.
The existence and uniqueness of these solutions are demonstrated using fixed point the-

ory within a Banach space. Furthermore, a solution is presented for the specific scenario

where thermal coefficients remain constant.

The mathematical formulation describing the behavior of the liquid phase involves a

generalized heat equation that accommodates a bar with a varying cross-section:

c(θ1)γ(θ1)
∂θ1

∂t
=

1

zν
∂

∂z

[
λ(θ1)z

ν ∂θ1

∂z

]
+ ρ(θ1)j

2, z1(t) < z < z2(t), 0 < t < ta, (1)

Within this context, θ1(z, t) signifies the temperature in the liquid phase. Parameters

such as c(θ1), γ(θ1), λ(θ1), and ρ(θ1) are specific heat, density, heat conductivity, and
electrical resistivity, respectively, all of which depend on temperature and consequently

introduce nonlinearity into the problem. The scaling symmetry of micro-asperity is

captured by ν > 1, ta represents the duration of arcing, and j symbolizes the current
density. The boundary conditions are as follows:

θ1(z1(t), t) = θb, (2)

θ1(z2(t), t) = θm. (3)

Here, θb denotes the boiling temperature, and θm signifies the melting temperature. The
position of the interface where the temperature reaches the melting point is identified
as z = z2(t) and can be determined by applying the Stefan condition:

−λ(θ1(z2(t), t))
∂θ1(z2(t), t)

∂z
= lmγm

dz2

dt
, t > 0. (4)

The latent heat and density at the melting temperature are represented as lm and γm,
respectively. The initial temperature field condition in this region is specified as:

θ1(z, 0) = θm, z1(0) = z2(0) = 0. (5)

The Joule heating term in the equation (1) can be described in the form

ρ(θ1)j
2 = ρ(θ1)

I20 sin2(ωt)

π2z2ν

where

sin2(ωt) ≈ ktν−1, k =
sin2(ωta)

tν−1
a

.

We will examine the one more alternative problem that involves substituting condition

(2) with a heat flux condition described by equation below:

−λ(θ1(z1(t), t))
∂θ1(z1(t), t)

∂z
=
P0e−z20

2a
√
πt

. (6)

In this context, P0e−z20/(2a
√
πt) represents a specified heat flux characterized by a

positive power value P0.
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We establish Adams type Stein-Weiss inequality on global Morrey spaces on general

homogeneous groups. Special properties of homogeneous norms and some boundedness

results on global Morrey spaces play key roles in our proofs. As consequence, we obtain
fractional Hardy, Hardy-Sobolev, Rellich and Gagliardo-Nirenberg inequalities on Mor-

rey spaces on stratified groups. While the results are obtained in the setting of general

homogeneous groups, they are new already for the Euclidean space RN . This work was
jointly with M.A. Ragusa, M. Ruzhansky and D.Suragan and published in [1 ].

Funding: The authors were supported by the grant no. AP13067894 of the Science

Committee of the Ministry of Science and Higher Education of the Republic of Kaza-

khstan.

Keywords: global Morrey space, Stein-Weiss inequality.

2020 Mathematics Subject Classification: 22E30, 43A80

References

[1] Kassymov, A., Ragusa, M. A., Ruzhansky, M., and Suragan, D. Stein-Weiss-

Adams inequality on Morrey spaces, Journal of Functional Analysis, (2023), 110152.
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The initial-boundary value problem for the heat equation with discontinuous coeffi-

cients
∂ui

∂ t
= k2i

∂2ui

∂x2
, (1)

is considered in the domain Ω = ∪Ωi, Ωi = {(x, t), li−1 < x < li, 0 < t < T} (i =
1, 2, 3), with initial conditions

u(x, 0) = φ(x), l0 < x < l3, (2)

boundary conditions of the form α1
∂u1(l0,t)

∂x
+ β1u1(l0, t) = 0,

α2
∂u3(l3,t)

∂x
+ β2u3(l3, t) = 0,

0 ≤ t ≤ T, (3)

and pairing conditions

u(li − 0, t) = u(li + 0, t), 0 ≤ t ≤ T (i = 1, 2), (4)

ki
∂ui(li − 0, t)

∂x
= ki+1

∂ui+1(li + 0, t)

∂x
, 0 ≤ t ≤ T, (i = 1, 2). (5)

In the case without discontinuity, the spectral theory of these problems is constructed

almost completely. In [1], the heat equation with a discontinuous coefficient was consid-
ered under Sturm-type boundary conditions (separated boundary conditions), eigenval-

ues and eigenfunctions were found, and various special cases were investigated.

In this paper, the spectral questions of problem (1)-(5) are investigated. The eigen-
values and eigenfunctions are found, and the existence and uniqueness theorem for the

classical solution is proved.
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This work deals with the nonlinear neutral Levin-Nohel integro-differential equation

with Caputo fractional derivative and variable delays. The Ulam-Hyers-Rassias stability,
Ulam-Hyers stability, semi-Ulam-Hyers-Rassias stability are studied. The existence and

uniqueness of solutions are established by using Krasnoselskii’s fixed point theorem and
contraction mapping principle.
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We prove Lieb–Thirring inequalities on manifolds with negative constant curvature.

The discrete spectrum appears below the continuous spectrum. In order to prove the
main statement we use the result regarding Lieb–Thirring inequalities for Schrödinger

operators with operator-valued potentials. As an application we obtain a Pólya type

inequality with not a sharp constant
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This report is devoted to relation between integrability properties of functions and

summability properties of their Fourier coefficients. In particular, we prove Hardy-

Littlewood type theorem.

For functions f(x) ∈ L1([0, 1]) with Fourier series
∞∑

k=−∞
cke

2πkx, where {ck}∞k=0 and

{ck}0−∞ are nonincreasing sequences the Hardy-Littlewood theorem holds i.e., there exist

C1, C2 > 0 such that

C1∥f∥Lp ≤

 ∞∑
k=−∞

(|k|+ 1)p−2cpk

 1
p

≤ C2∥f∥Lp . (1)

Equivalence (1) has a lot of generalizations, see for instance, [1], [2], [3] and refer-

ences therein. In this work, we get a new generalizations of Hardy-Littlewood’s theo-

rem. In particular, we obtain the equivalence (1) for functions with Fourier coefficients
{ck}∞k=−∞ such that, for any k ≥ 0 and some C > 0, the following inequality

∑
[2k−1]≤|m|<[2k]

|am − am+1| ≤ C sup
r∈N

min(1, 2r−k) sup
2r−1≤|m|<2r

1

|m|

∣∣∣∣∣∣
m∑

j=0

aj

∣∣∣∣∣∣
holds, where [x] is an integer part of number x.
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The study is dedicated to approximate methods for solving the problem of non-

isothermal filtration of immiscible fluids. The qualitative properties of solutions have

been investigated. The obtained results were utilized in the development of digital
technologies for oil and gas fields.

The problem formulation is considered through the Maskeet-Leverett temperature
model.

The qualitative properties of solutions to problems (1) - (5) have been investigated,

and computational algorithms have been developed for numerical implementation on a
computer. Based on these algorithms, test cases with real data from a specific oil field

in the western region of the Republic of Kazakhstan have been conducted.

∂Θ

∂t
= div(λ(x, s,Θ)∇Θ− v⃗Θ), (1)

m
∂s

∂t
= div(Ka0(a1∇σ − a2∇Θ+ f⃗1)− b1v⃗ = divv⃗1, (2)

divv⃗ = div(K(∇p+ a3∇Θ+ f⃗2)), (3)

σ =
s− s∗(Θ)

s∗(Θ)− s∗(Θ)

on s∗ ≤ s(x, t) ≤ s∗;σ = 0 on s < s∗(Θ), σ = 1 on s > s∗(Θ) The last condition

defines the function

σ = Φ(s,Θ)

at

s ∈ (0, 1),

where Θ is equal to the temperature of the non-uniform liquid, λ is the thermal
conductivity coefficient s = s1 is the saturation of the wetting phase

v⃗ = v⃗1 + v⃗2

is the average filtration velocity of the mixture v⃗i is the phase filtration velocities.

Additionally, in the considered model, the residual saturations are not constant,

denoted as s0i = s0i (Θ) > s−0
i = const > 0, i=1,2. These specified properties lead to

the following conditions for the saturation s0i , i = 1, 2 s(x, t) (wetting phase):

0 ≤ const = s⃗∗ ≤ s∗(Θ) ≤ s(x, t) ≤ s∗(Θ) ≤ s∗(Θ) ≤ s⃗∗ = const ≤ 1

where s⃗∗ = s01(Θ), s⃗∗ = 1 − s02(Θ). K = K(x,Θ, σ) the tensor associated with the
permeability of a medium.

a0 = a0(s), ai(σ,Θ), i = 1, 2, 3 bk = bk(σ,Θ, f⃗k = f⃗k(x, σ,Θ k = 1, 2

a0(0) = a0(1), b1(0,Θ) = 0; inf a1 > a0 > 0

Let Ω ∈ R3 be bounded region, the boundary ∂Ω that is divided into several
components depending on the type of boundary conditions:

(P, S,Θ) = (P0, S0,Θ0, (x, t) ∈ Σ1 = Γ1x(0, T )
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v⃗i n⃗ = bi ψ, i = 1, 2;Θ = Θ0(x, t), (x, t) ∈ Σ2 = Γ2x(0, T )

v⃗i n⃗ = bi ψ, i = 1, 2;

λ
∂Θ

∂n
= β (Θ0 −Θ), (x, t) ∈ Σ3 = Γ3x(0, T )

To the boundary conditions (4), it is necessary to add initial conditions:

(s,Θ)t=0 = (s0,Θ0)(x, 0), x ∈ Ω
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In the report, the initial-boundary value problem for the heat equation under antiperi-
odic boundary conditions in the absence of agreement between the initial and boundary

data is considered.

It is well known that when studying boundary value problems for parabolic equations

in Hölder space, it is necessary to require the fulfillment of conditions for the compat-
ibility of boundary and initial data at the boundary of the domain at t = 0. These

conditions ensure the continuity of the solution and its derivatives, as well as the bound-
edness of the Hölder constants of higher derivatives inside the domain. Consistency

conditions are functional identities that connect these functions on the boundary of the

domain at the initial moment.

Problem P. Find in Ω = {(x, t) : 0 < x < l, 0 < t < T} a solution u(x, t) of the heat
equation

ut − k2uxx = f(x, t), (1)

satisfying the initial condition

u(x, 0) = φ(x), 0 ≤ x ≤ l, (2)

and antiperiodic boundary conditions{
ux(0, t) + ux(l, t) = 0,

u(0, t) + u(l, t) = 0.
(3)

It is well known that for the existence of a classical solution, the matching conditions

must be satisfied. For example, the zero and first order matching conditions for problem
(1)-(3) are

A0 ≡ φ(0) + φ(l) = 0, A1 ≡ φ′(0) + φ′(l) = 0.

The second-order matching condition arises when we consider solutions of the problem

from the class u ∈ C2,1
x,t (Ω̄). For functions from such a class, we can pass to the limit in

equation (1) at t→ 0 at x = 0 and x = l. Then we get

A2 ≡ k2[φ′′(0) + φ′′(l)]− [f(0, 0) + f(l, 0)] = 0.

For a problem with Dirichlet boundary conditions, solutions with a mismatch between

the boundary and initial data were studied in [1].

In this report, we consider the problem (1)-(3) with nonlocal boundary conditions.

Cases where the matching conditions of the zero, first and second orders are not met are
considered in the report.

Funding: The authors were supported by the grant no. AP14869063 of the Science

Committee of the Ministry of Science and Higher Education of the Republic of Kaza-

khstan.

Keywords: heat equation, initial-boundary value problem, nonlocal boundary condi-
tions, matching conditions.

2020 Mathematics Subject Classification: 35K05, 335K15

References
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Let Ω ⊂ Rn be bounded simply-connected domain with smooth boundary ∂Ω, and

denote D = (0, T ) ∩ Ω.

Let us consider the following equation on the domain D

Lu =
∂

∂t

(
K(t)

∂

∂t
u

)
−∆xu = f(x, t), (1)

where K(t) = tβ(1− t)βK1(t), K1(t) ∈ C2[0, T ].

Denote L0 as the closure of the differential operator (1) in L2(D) on a subset of

functions u ∈
o

W 2
2 (0, T )∩C2(Ω), which satisfies the lateral potential boundary condition

−
u(x, t)

2
−
∫
∂Ω

(
εn(x, ξ)

∂u(ξ, t)

∂nξ
−
∂εn(x, ξ)

∂nξ
u(ξ, t)

)
dSξ = 0, x ∈ ∂Ω, t ∈ [0, T ]. (2)

where ε(x, ξ) is the fundamental solution of the Laplace equation

−∆xε(x, ξ) = δ(x− ξ), x, ξ ∈ Ω. (3)

By using spectral decomposition to the self-adjoint problem

−∆xem(x) = λmem(x), x ∈ Ω, (4)

−
em(x)

2
−
∫
∂Ω

(
εn(x, ξ)

∂em(ξ)

∂nξ
−
∂εn(x, ξ)

∂nξ
em(ξ)

)
dSξ = 0, x ∈ ∂Ω, (5)

have found reversibility conditions for the semi-minimal operator L−1
0 .
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Let I = (0,∞), 1 < p, r, q < ∞ and p′ = p
p−1

. Let u, v and w be positive

functions locally summable on I such that u ∈ Lloc
q (I) and v−1 ∈ Lloc

p′ (I). Let

∥f∥p,v =

(∞∫
0

|v(t)f(t)|pdt
) 1

p

for 1 ≤ p <∞.

We consider the weighted inequality

∥Rf∥q,u ≤ C∥f∥p,v , f ≥ 0, (1)

where R is one of the following operators

Tf(x) =

 x∫
0

G(x, t)w(t)

 ∞∫
t

K(s, t)f(s)ds

r

dt

 1
r

, (2)

Sf(x) =

 x∫
0

G(x, t)w(t)

 t∫
0

K(t, s)f(s)ds

r

dt


1
r

, (3)

T−f(x) =

 ∞∫
x

G(t, x)w(t)

 t∫
o

K(t, s)f(s)ds

r

dt


1
r

, (4)

S−f(x) =

 ∞∫
x

G(t, x)w(t)

 ∞∫
t

K(s, t)f(s)ds

r

dt

 1
r

. (5)

The inequality (1) for the operators (2)–(5) withG(·, ·) ≡ K(·, ·) ≡ 1 has been studied,

for example, in the works [1] and [2]. The case, when G(·, ·) ≡ 1 and K(·, ·) satisfies the

condition O stating that K(x, s) ≥ 0 for x ≥ s > 0 and K(x, s) ≈ K(x, t) +K(t, s) for
x ≥ t ≥ s > 0, has been considered, for example, in [3].

A more general case, when G(·, ·) and K(·, ·) satisfy the condition O, has been inves-
tigated, for example, in [4] and [5].

Here we present the results for the inequality (1) when R ≡ T and R ≡ S. Similar
results are obtained for R ≡ T− and R ≡ S−.

We assume that the functions K(·, ·) and G(·, ·) belong to the classes O±
n , n ≥ 1, and

O±
m,m ≥ 1, respectively. The classes O±

n , n ≥ 1, were introduced in [6]. These classes
are wider than the class O.
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Let us consider the following initial-boundary value problem for the Navier-Stokes-

Voigt system that governs density-dependent flows (nonhomogeneous flows) of incom-

pressible fluids with elastic properties,

div u = 0 in QT , (1)

(ρu)t + div(ρu⊗ u) = ρf −∇p+ µ∆u+ κ∆ut in QT , (2)

ρt + div(ρu) = 0, ρ ≥ 0 in QT , (3)

ρu = ρ0u0, ρ = ρ0 in {0} × Ω, (4)

u = 0 on ΓT . (5)

Here, Ω ⊂ Rd is a bounded domain, QT = (0, T ) × Ω, 0 < T < ∞ is a cylinder with

lateral ΓT = (0, T ) × ∂Ω. The unknowns of the problem are u, ρ and p, while f , u0
and ρ0 are given data. For now, we consider a general space dimension d ≥ 2, though

the real-world applications correspond to the cases d = 2, 3. In these cases, u denotes

the velocity field, ρ accounts for the density, p is the pressure, f stands for the external
forces field, while µ and κ are positive constants to the dynamic viscosity and to the

relaxation time. We are interested in the case of the initial data u0 and ρ0 satisfying

div u0 = 0 in Ω,

0 ≤ ρ0 ≤M <∞ in Ω,

for some positive constant M . The case when 0 < m ≤ ρ ≤ M < ∞ was considered in

[1].

In this talk, we prove the existence and uniqueness of strong solution above possed

problem (1)-(5).
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Initial-boundary value problems for linear equations of hyperbolic type are a fairly

well-developed part of the theory of partial differential equations (see, for example, [1-
3]). And one of the most developed methods for solving them is the Fourier method,

which is also called the method of separation of variables or the method of expansion in

terms of eigenfunctions. This method has been well developed for the case of self-adjoint
boundary conditions in a spatial variable. However, for the case of non-self-conjugate

boundary conditions the problem still remains open.

In this talk considers initial boundary value problems for the one-dimensional wave
equation

utt(x, t)− uxx(x, t) + q(x)u(x, t) = f(x, t), (x, t) ∈ Ω, (1)

in the domain Ω = {(x, t) : 0 < x < 1, 0 < t < T}, with nonlocal boundary conditions of

general form

Uj(u) = aj1ux(0, t) + aj2ux(1, t) + aj3u(0, t) + aj4u(1, t) = 0, j = 1, 2. (2)

Additionally, standard initial conditions are specified

u(x, 0) = τ(x), ut(x, 0) = ν(x), 0 ≤ x ≤ 1. (3)

Application of the Fourier method (method of separation of variables) leads to the

following spectral problem

−y′′(x) + q(x)y(x) = λy(x), 0 < x < 1, (4)

Uj(y) = aj1y
′(0) + aj2y

′(1) + aj3y(0) + aj4y(1) = 0, j = 1, 2. (5)

It is well known that if conditions (5) are strongly regular, then the system of root

vectors of problem (4)-(5) forms a Riesz basis in L2(0, 1). And the Fourier method can

be implemented to solve problem (1)-(3). However, when the boundary conditions (5)
are not strongly regular, the system of root vectors of problem (4)-(5) may not form

an unconditional basis. And this does not make it possible to use the Fourier method.
In the case when the boundary conditions (5) are irregular, the system of root vectors
of problem (4)-(5) does not form an unconditional basis. Thus, for the application of

the Fourier method, the case when the boundary conditions (5) are not strongly regular
remains unfounded.

This talk considers just such a case. An algorithm has been constructed to prove

the correctness (in the classical and generalized senses) of the initial boundary value
problem (1)-(3) for the case when the boundary conditions (5) are not strongly regular.

This method can be applied regardless of whether the system of root vectors of problem

(4)-(5) forms an unconditional basis in L2(0, 1) or not.

The technique is based on the method for solving heat conduction problems with not

strongly regular boundary conditions [4].
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In this talk, we obtain a new version of the Hardy-Sobolev inequality in the integral

form which covers the recent inequality derived in [1] and improves the results established
in [2]. It gives new results in one dimension. Moreover, we analyse radial and non-radial

versions of the considered multidimensional sharp Hardy-Sobolev inequality and as a

consequence we establish an improved version of the Heisenberg-Pauli-Weyl uncertainty
principle.
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Bahçeşehir University (Türkiye), Ghent University (Belgium),
Institute of Mathematics and Mathematical Modeling (Kazakhstan)



78 Functional Analysis in Interdisciplinary Applications, FAIA2023

On the Third-Order Differential Equation with
Unbounded Coefficients
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We study the solvability and maximal regularity questions for the singular third-order

differential equation with unbounded coefficients and some applications. In contrast to
the cases studied earlier, the leading and intermediate coefficients of above equation can

grow independently.

We obtain sufficient coefficient conditions for the correctness of the equation and
compactness of the inverse to the corresponding third-order differential operator. The

maximal regularity estimate for a generalized solution is proved. Using these results we

have obtained upper and lower estimates for the number of Kolmogorov k-diameters of
one set associated with solutions of the linear Korteweg-de Vries equation. For specific

coefficients, we have shown that, two-sided estimates of the Kolmogorov k-diameters

themselves are derived from the maximal regularity inequality.

Methods of the theory of closed operators, embedding and compactness theorems for

weighted Sobolev spaces, as well as some integral inequalities of Hardy type with weights

are used in the work.
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On Logarithmically Submajorization for τ- Measurable
Operators
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We denote by M a semi-finite von Neumann algebra with a faithful normal finite

trace τ and by L0(M) the set of all τ -measurable operators associated with (M, τ). For

x ∈ L0(M), the distribution function λ·(x) of x is defined by λt(x) = τ(e(t,∞)(|x|)) for

t > 0, where e(t,∞)(|x|) is the spectral projection of |x| in the interval (t,∞), and the

generalized singular numbers µ·(x) of x by

µt(x) = inf{s > 0 : λs(x) ≤ t} for t > 0.

Let

Llog+
(M) = {x ∈ L0(M) : log+ |x| ∈ L1(M) +M},

where log+ t = {log t, 0}, t > 0. If x, y ∈ Llog+
(M) such that∫ t

0
log µs(x)ds ≤

∫ t

0
log µs(y)ds, t > 0,

x is said to be logarithmically submajorized by y, denoted by x ≼log y.

Theorem 1. The following statements are equivalent:

(i) If x, y ∈ Llog+
(M) are self-adjoint operators such that ±y ≤ x, then y ≼log x.

(ii) If a, b ∈ M, x, y ∈ Llog+
(M) and

(
x z
z∗ y

)
≥ 0, then

a∗zb+ b∗z∗a ≼log a
∗xa+ b∗yb.

(iii) If x, y, z ∈ Llog+
(M) and

(
x z

z∗ y

)
≥ 0, then z∗ + z ≼log x+ y.

(iv) If x, y ∈ Llog+
(M) are positive operators, then x− y ≼log x+ y.

(v) If x, y, z ∈ Llog+
(M) and

(
x z

z∗ y

)
≥ 0, then z∗ ⊕ z ≼log x⊕ y.

(vi) If x, y ∈ Llog+
(M) are normal operators and z ∈ Llog+

(M) is positive operator,

then for any contraction a ∈ M,

|za(x+ y)a∗z| ≼log za(|x|+ |y|)a∗z.
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This abstract proposes a novel time-dependent gain parameter-based sliding mode

controller (SMC) to realize the finite-time/fixed-time synchronization of memristive
shunting inhibitory memristive neural networks (Mem-SICNNs) having time-varying de-

lays. In this regard, a new terminal sliding mode surface is designed and its reacha-

bility is analysed. According to synchronization error analysis, the stability property
of the desired error system is reached within finite-time/fixed-time range by propos-

ing a unique time-dependent gain parameter-based SMC and choosing the appropriate
Lyapunov functionals. Finally, a numerical example is approached by software simula-

tion and manual calculation to estimate the settling-time of the finite-time/fixed-time

synchronization criteria of the proposed Mem-SICNNs model.
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Generalized Stankovich Transform and
Distributed Order Evolutionary Equations
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The report discusses an integral transform connecting the operators d
dx

and D[µ]
x ,

where

D[µ]
x f(x) =

∫
Dt

xf(x)µ (dt)

is a distributed order differentiation operator. Here Dt
x denotes a fractional derivative of

order t with respect to x, µ is an non-negative Lebesgue-Stieltjes measure. It is assumed
that suppµ ∈ [0, 1) and sup suppµ > 0. In the case when µ is concentrated at a point,

the operator D[µ]
x coincides (up to a constant factor) with the fractional differentiation

operator, and the corresponding transform turns into the Stankovich transform [1, 2].

As an application of the considered transform, we construct solutions of initial prob-

lems for the distributed order evolutionary equation of the form

D[µ]
x u(x) = Lu(x) + f(x), lim

x→0
D[µ1]

x u(x) = a,

in terms of solutions of the problem

v′(x) = Lv(x) + g(x), v(x) = a.

Here L is a linear operator that does not depend on x (it is assumed that u(x), f(x)
and a, as well as L, can depend on other variables, i.e. can be elements of some function

space, for each fixed x), and µ1 is the shift of the measure µ by 1.
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ary equation, Stankovich transform.
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Solvability of Boundary Value Problems for a
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We are devoted to studying the existence of a solution to the differential equation

y′′ (x) + αy′′ (−x) = F (x, y (x) , y (−x)) , x ∈ (−1, 1) , (1)

with boundary conditions

y (−1) = y1, y (1) = y2, (2)

where F : [0, 1]×R2 → R is a given function, α ̸= ±1. The boundary value problem

(1), (2) is equivalent to the integral equation

y (x) =
1

2
(y2 + y1) +

1

2
(y2 − y1)x+

1∫
−1

G (x, t)F (t, y (t) , y (−t)) dt,

where G (x, t) is Green’s function of the homogeneous boundary value problem (1), (2)

in the case y1 = y2 = 0.

Theorem 1. Let α ̸= ±1. Let the function F (x, ς, ξ) be continuous and sat-

isfy the Lipschitz condition
∣∣∣F (x, ς, ξ)− F

(
x, ς̃, ξ̃

)∣∣∣ ≤ l1 |ς − ς̃| + l2

∣∣∣ξ − ξ̃
∣∣∣ for any

(x, ς, ξ) ,
(
x, ς̃, ξ̃

)
∈ Ω, with some positive numbers l1, l2 such that

9(l1+l2)
16|1−|α|| < 1. Then

the boundary value problem (1), (2) has a unique solution.
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Optimal Difference Formulas in the Sobolev Spaces
Kholmatvay SHADIMETOV1,2,

1 Tashkent state transport university, Tashkent, Uzbekistan
2 V.I.Romanovskiy Institute of mathematics, Uzbekistan Academy of

Sciences, Tashkent, Uzbekistan
E-mail: kholmatshadimetov@mail.ru

In the world today, the finite difference method is used for the numerical solution of

many problems in physics and technology described by the equations of mathematical

physics. The basic concepts of difference methods are approximation, stability, conver-
gence, which are illustrated with examples of difference schemes for ordinary differential

equations. For large numerical calculations, it becomes useful to optimize the process of

approximate solution of ordinary differential equations, and if calculations are performed
using difference formulas, then the formulas themselves are optimized. The problem of

optimizing difference formulas in the modern understanding looks like the problem of

finding the minimum norm of the error functional of the difference formula. Therefore,
constructing optimal difference formulas in Sobolev spaces and finding the norm of the

error functional of optimal difference formulas are urgent problems in computational

mathematics.

This work is devoted to the study of optimal difference formulas in Sobolev space.

There are algebraic and functional formulations of the problem of constructing difference

formulas. In this work we consider functional formulations of the problem.

The functional formulation considers functions φ(x), belonging to the Sobolev space

L
(m)
2 (0, 1), where L

(m)
2 is a Hilbert space whose elements are classes of real-valued

functions differing on a polynomial of degree (m − 1) and square integrable with a

derivative of order m on the interval [0, 1].

We consider approximate solution of the Cauchy problem for first order ordinary
linear differential equations. For this we suggest the functional method of construction

of difference formulas. The error of the difference formula is estimated from above by

the norm of the error functional of this formula. To find in explicit form the norm of the
error functional ℓ of difference formulas, we use the extremal function of this functional.

Next, we find the extremal function in the Sobolev space L
(m)
2 (0, 1) for any m ≥ 2.

By minimizing the squared norm of the error functional ℓ by the coefficients C(1)[β]
of difference formulas, we obtain a Wiener–Hopf type system for finding optimal coeffi-

cients C̊(1)[β] difference formulas and optimal polynomial of discrete argument P̊m−2[β].

Here we prove the existence and uniqueness of a solution to a Wiener–Hopf type system.
At the same time, this work developed an algorithm for constructing optimal difference

formulas in the Sobolev space L
(m)
2 (0, 1) for any m ≥ 2, with the help of which rep-

resentations of the coefficients of optimal Adams-type difference formulas are obtained.

Keywords: optimal difference formulas, the error functional, Sobolev space, ordinary
differential equations, approximation, stability, convergence.

2020 Mathematics Subject Classification: 65L05, 34A12
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Inverse Problem for Fractional Order Subdiffusion
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We study the inverse problem of finding functions {u(t), f} that satisfy the following

subdiffusion equation

Dρ
t u(t) +Au(t) = g(t)f, ρ ∈ (0, 1], t ∈ (0, T ], (1)

with the initial

u(0) = φ, (2)

and the additional conditions
T∫
0

u(t)dt = ψ. (3)

Here g(t) ∈ C[0, T ] is a given function and φ,ψ ∈ H are known elements, A is an

unbounded positive self-adjoint operator and Dρ
t stands for the Caputo fractional deriv-

ative.

We introduce the power of operator A with domain

D(A) = {h ∈ H :

∞∑
k=1

λ2k|hk|
2 <∞},

acting in H according to the rule:

Ah =
∞∑

k=1

λkhkvk.

For 0 < ρ < 1 and an arbitrary complex number µ, let Eρ,µ(z) denote the Mittag-

Leffler function with two parameters of the complex argument z (see [1]):

Eρ,µ(z) =

∞∑
k=0

zk

Γ(ρk + µ)
.

Lemma 2. Let ρ ∈ (0, 1], g(t) ∈ C1[0, T ] and g(0) ̸= 0. Then there exist numbers
m0 > 0 and k0 such that, for all T ≤ m0 and k ≥ k0, the following estimates hold:

C0

λk
≤ |pk,ρ(T )| ≤

C1

λk
,

where

pk,ρ(T ) =

T∫
0

g(η)(T − η)ρEρ,ρ+1(−λk(T − η)ρ)dη

and constants C0 and C1 > 0 depend on m0 and k0.

Let N = Kρ ∪K0,ρ, where N is the set of all natural numbers. Kρ and K0,ρ are sets

such that: if pk,ρ(T ) ̸= 0, k ∈ Kρ, otherwise, if pk,ρ(T ) = 0, then k ∈ K0,ρ.

Theorem 1. Let ρ ∈ (0, 1], φ ∈ H, ψ ∈ D(A), g(t) ∈ C[0, T ] and g(t) ̸= 0, t ∈ [0, T ].

Then there exists a unique solution of the inverse problem (1)-(3).

Theorem 2. Let ρ ∈ (0, 1], φ ∈ H, ψ ∈ D(A), g(t) ∈ C1[0, T ]. Further, we will

assume that the conditions of Lemma 2 are satisfied and T is sufficiently small. If set

K0,ρ is empty, for all k, then there exists a unique solution of the inverse problem (1)-(3):

f =
∞∑

k=1

1

pk,ρ(T )
[ψk − φkTEρ,2(−λkT ρ)] vk,

Bahçeşehir University (Türkiye), Ghent University (Belgium),
Institute of Mathematics and Mathematical Modeling (Kazakhstan)



Functional Analysis in Interdisciplinary Applications, FAIA2023 85

u(t) =

∞∑
k=1

[
φkEρ,1(−λktρ) +

pk,ρ(t)

pk,ρ(T )
[ψk − φkTEρ,2(−λkT ρ)]

]
vk.

If set K0,ρ is not empty, then for the existence of a solution to the inverse problem, it is

necessary and sufficient that the following conditions

ψk = φkTEρ,2(−λkT ρ), k ∈ K0,ρ

be satisfied. In this case, the solution to the problem (1)-(3) exists, but is not unique:

f =
∑

k∈Bρ

1

pk(T )
[ψk − φkTEρ,2(−λkT ρ)] vk +

∑
k∈K0,ρ

fkvk,

u(t) =

∞∑
k=1

[
φkEρ,1(−λktρ) + fk

]
vk,

where fk, k ∈ K0,ρ, are arbitrary real numbers.

Keywords: subdiffusion equation, inverse problem, the Caputo derivative, Fourier

method.
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Consider the multipoint Cauchy problem for nonlinear Schrödinger equations (NLS)

(1.1) i∂tu+ Lu+ F (u) = 0, x ∈ Rn, t ∈ [0, T ] ,

(1.2) u (0, x) = φ (x) +
m∑

k=1

αku (λk, x) , for a.e. x ∈ Rn,

where L is an elliptic operator defined by

(1.3) Lu =
∑

|β|≤2l

aβD
βu,

for β = (β1, β2, ..., βn), aβ ∈ C, m is an integer, λk ∈ (0, T ] , αk are complex numbers,
F is a nonlinear operator and u = u(t, x) is an unknown function. If F (u) = λ |u|p u in

(1.1) we get the multipoint Cauchy problem for the nonlinear equation

(1.4) i∂tu+ Lu+ λ |u|p u = 0, x ∈ Rn, t ∈ [0, T ] ,

u (0, x) = φ (x) +
m∑

k=1

αku (λk, x) for a.e. x ∈ Rn,

where p ∈ (1,∞), λ is a real number.

The existence of solutions and regularity properties of Cauchy problem for NLS equa-
tions studied e.g in [1− 5], [7], [8] and the references therein. In contrast, to the men-
tioned above results we will study the existence, uniqueness and the regularity properties

of the multipoint Cauchy problem (1.1)− (1.2).

2. Definitions and background

Let Lq
tL

r
x ((a, b)× Ω) denotes the space of strongly measurable functions that are

defined on the measurable set (a, b)× Ω with the norm

∥f∥Lq
tL

r
x((a,b)×Ω) =

b
a

∫
Ω

|f (t, x)|r dx


q
r

dt


1
q

, 1 ≤ q, r <∞ .

Let 𭟋 denotes the Fourier transformation, û = 𭟋u and

s ∈ R, ξ = (ξ1, ξ2, ..., ξn) ∈ Rn, |ξ|2 =n
k=1 ξ

2
k.
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S = S(Rn) denotes the Schwartz class, i.e. the space of all complex-valued rapidly

decreasing smooth functions on Rn equipped with its usual topology generated by semi-
norms. S(Rn) denoted by just S. Let S′(Rn) denote the space of all continuous linear

operators, L : S → C, equipped with the bounded convergence topology. Recall S(Rn)

is norm dense in Lp(Rn) when 1 < p < ∞. Let D′ (Ω) denote the class of generalized
functions on Ω ⊂ Rn. Consider Sobolev space W s,p (Rn) and homogeneous Sobolev

spaces W̊ s,p (Rn) defined by respectively,

W s,p (Rn) =
{
u : u ∈ S′(Rn),

∥u∥Ws,p(Rn) =

∥∥∥∥𭟋−1
(
1 + |ξ|2

) s
2
û

∥∥∥∥
Lp(Rn)

<∞
}
,

W̊ s,p (Rn) =
{
u : u ∈ S′(Rn), ∥u∥W̊s,p(Rn) =

∥∥𭟋−1 |ξ|s û
∥∥
Lp(Rn)

<∞
}
.

Sometimes we use one and the same symbol C without distinction in order to denote
positive constants which may differ from each other even in a single context. When we

want to specify the dependence of such a constant on a parameter, say η, we write Cη .

Let L be a differential operator defined by (1.3) and A = [aij ], i, j = 1, 2, ..., n.

Condition 2.1. Let L0 (ξ) =|β|=2l aβξ
β ̸= 0 for ξ ∈ Rn, ξ ̸= 0 and there exists a

positive constant M0 such that

|L (ξ)| =
∣∣∣|β|≤2laβ (iξ)β

∣∣∣ ≥M0

(
|ξ|2l + 1

)
for ξ = (ξ1, ξ2, ...ξn) ∈ Rn with ξβ = ξβ1

1 .ξβ2
2 ...ξβn

n .

Definition 2.2. Consider the initial value problem (1.1)− (1.2) for φ ∈ W̊ s,p (Rn).

This problem is critical when s = sc := n
2
− 2

p
, subcritical when s > sc, and supercritical

when s < sc.

We write a ≲ b to indicate that a ≤ Cb for some constant C, which is permitted to

depend on some parameters.

3. Dispersive and Strichartz type inequalities for linear Schrödinger

equation

Assume the Condition 2.1 holds. The fundamental solution of the Schrödinger

operator i∂tu+ Lu is found as solution of the equation

(3.1) i∂tu+ Lu = δ (t, x) ,

where δ (t, x) is the generalized delta function. By applying the Fourier transformation

with respect to x in (3.1) we get

(3.2) i
d

dt
û (t, ξ)− L (ξ) û (t, ξ) = 1 (ξ)× δ (t) .

By using the Fourier transformation and by following [9, § 6.6,14.4] it can be shown

that û (t, ξ) = θ (t) e−itL(ξ), i.e. the fundamental solution (3.1) can be exspressed as

U (t, .) = UL (t, x) = 𭟋−1
x

[
θ (t) e−itL(ξ)

]
,

where 𭟋x is the Fourer transformation with respect to x and θ (t) is the Heaviside unit
function.

Condition 3.1. Assume n ≥ 1,

(3.3)
2

q
+
n

r
≤
n

2
, 2 ≤ q, r ≤ ∞ and (n, q, r) ̸= (2, 2, ∞) .

Assume H is an abstract Hilbert space and Q is a Hilbert space of function. Suppose
for each t ∈ R an operator U (t): Q→ L2 (Ω) obeys the following estimates:
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(3.4) ∥U (t) f∥L2
x(Ω) ≲ ∥f∥H

for all t, Ω ⊂ Rn and all f ∈ Q;

(3.5) ∥U (s)U∗ (t) g∥L∞
x (Ω) ≲ |t− s|−

n
2 ∥g∥L1

x(Ω) ,

(3.6) ∥U (s)U∗ (t) g∥L∞
x (Ω) ≲

(
1 + |t− s|−

n
2

)
∥g∥L1

x(Ω)

for all t ̸= s and all g ∈ L1
x (Ω) .

Consider the multipoint Cauchy problem for forced Schrodinger equation

(3.7) i∂tu+ Lu = f, t ∈ [0, T ] , x ∈ Rn,

u (t0, x) = φ (x) +

m∑
k=1

αku (λk, x) , x ∈ Rn, t0, λk ∈ [0, T ) , λk > t0.

We are now ready to state the standard Strichartz estimates:

Lemma 3.3. Assume the Condition 2.1 is satisfied, φ ∈ W̊ γ,p (Rn) for γ ≥ n
p

and

p ∈ [1,∞]. Then problem (3.7) has a unique generalized solution.

Proof. By using the Fourier transform we get from (3.7) :

(3.8) iût (t, ξ)− L (ξ) û (t, ξ) = f̂ (t, ξ) ,

û (0, ξ) = φ̂ (ξ) +

m∑
k=1

αkû (λk, ξ) , for a.e. ξ ∈ Rn.

where û (t, ξ) is a Fourier transform of u (t, x) with respect to x.

Consider the problem

(3.9) ût (t, ξ) + iL (ξ) û (t, ξ) = f̂ (t, ξ) ,

û (0, ξ) = u0 (ξ) , ξ ∈ Rn, t ∈ [0, T ] ,

where u0 (ξ) ∈ C for ξ ∈ Rn. In view of Condition 2.1, by [6, §11] −iL (ξ) is a generator

of a strongly continuous C0 groups UL (t, ξ) = e−itL(ξ). Hence, the Cauchy problem

(3.9) has a solution for all ξ ∈ Rn and the solution can be expressed as

(3.10) û (t, ξ) = e−itL(ξ)u0 (ξ) +

t∫
t0

e−itL(ξ)|t−τ |f̂ (τ, ξ) dτ, t ∈ (0, T ) .

Using the formulas (3.8)− (3.10), we get that the solution of (3.7) will be expressed as

the following formula:

u (t, x) = V (t)φ (x) +

m∑
k=1

αkVk (t, x) +

m∑
k=1

αkGk (t, x) +G0 (t, x) ,

where

(3.11) V (t) = 𭟋−1 [UL (t, ξ) φ̂ (ξ)] , Vk (t, x) = 𭟋−1 [UL (λk, ξ) φ̂ (ξ)] ,

Gk (t, x) = 𭟋−1

 λk∫
t0

UL (λk − τ, ξ) f̂ (τ, ξ) dτ

 ,

G0 (t, x) = 𭟋−1

 t∫
t0

UL (t− τ, ξ) f̂ (τ, ξ) dτ

 .
By following [7, Theorem 1.2] we have:
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Theorem 3.1. Assume U(t) obeys (3.5) and (3.6). Then the following estimates

are hold

(3.12) ∥U (t) f∥Lq
tL

r
x
≲ ∥f∥H ,

(3.13) ∥U∗ (s) f (s) ds∥Q ≲ ∥f∥
L

q′
t Lr′

x

,

(3.14) s<t∥U (t)U∗ (s) f (s) ds∥Lq
tL

r
x
≲ ∥f∥

L
q̃′
t Lr̃′

x

for all pairs (q, r), (q̃, r̃).

Proof. By duality, (3.13) is equivalent to (3.14). By the TT ∗ method, (3.14) is in

turn equivalent to the bilinear form estimate

(3.15) |⟨U∗ (s) f (s) , U∗ (t)G (t)⟩dsdt| ≲ ∥f∥
L

q′
t Lr′

x

∥G∥
L

q′
t Lr′

x

.

By symmetry it suffices to show the retarded version of (3.13)

(3.16) |T (f,G)| ≲ ∥f∥
L

q′
t Lr′

x

∥G∥
L

q′
t Lr′

x

,

where T (F,G) is the bilinear form defined by

T (F,G) =

∫ ∫
s<t

⟨U (s)∗ f (s) , (U (t))∗G (t)⟩dsdt.

Then by reasoning as in [10, Theorem 3.1], by using the estimates (3.15), (3.16) and
the Lemma 3.3, we get the conclusion.

Theorem 3.2. Assume the Conditions 2.1 and 3.1 are satisfied. Let 0 ≤ s ≤ 1,

φ ∈ W̊ s,2 (Rn), f ∈ N0
(
[0, T ] ; W̊ s,2 (Rn)

)
and let u : σ → C be a solution to (3.7).

Then

(3.17) ∥|∇|s u∥S0([0,T ]) + ∥|∇|s u∥C0([0,T ];L2(Rn)) ≲

∥|∇|s φ∥L2(Rn) + ∥|∇|s f∥N0([0,T ]) .

Proof. Let 2 ≤ q, r, q̃, r̃ ≤ ∞ with

2

q
+
n

r
=

2

q̃
+
n

r̃
=
n

2
.

If n = 2, we also require that q, q̃ > 2. Consider first, the nonendpoint case. By Lemma
3.3 the problem has a solution. The linear operators in (3.12)-(3.14) are adjoint of one

another; thus, by the method of TT ∗ both will follow once we prove∥∥∥∥∥∥
∫

s<t

UL (t− s, .) f (s) ds

∥∥∥∥∥∥
L

q
tL

r
x

≲ ∥f∥
L

q′
t Lr′

x

.

Apply Theorem 3.1 with Q = L2
x (Rn) = L2

x. The energy estiamate (3.12):

∥UL (t, .) f∥L2
x
≲ ∥f∥L2

x

follows from Plancherel’s theorem, the untruncated decay estimate

∥UL (t− s, .) f∥L∞
x

≲ |t− s|−
n
2 ∥f∥L1

x
,

and explicit representation of the Schredinger evolution operator UL (t) = UL (t, x). Due
to properties gropes UL (t) and by the dispersive estimate (3.4) we have

|Φ| ≲s<t |UL (t− s) ds|B(H) |f (s)| ds ≲R |t− s|−n
(

1
2
− 1

p

)
|f (s)| ds,

where

Φ =

∫
s<t

UL (t− s) f (s) ds.
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Then by reasoning as in [10, Theorem 3.2], we obtain the conclusion.

4. Strichartz type estimates for solution of the nonlinear Schrödinger

equation

Consider the multipoint initial-value problem (1.1)− (1.2) .

Condition 4.1. Assume that the function F : C → C is continuously differentiable

and obeys the power type estimates

(4.1) F (u) = O
(
|u|1+p

)
, Fu (u) = O (|u|p) ,

(4.2) Fu (υ)− Fu (w) = O
(
|υ − w|min{p,1} + |w|max{0,p−1}

)
for some p > 0, where Fu (u) denotes the derivative of operator function F with respect

to u.

From (4.1) we obtain

(4.3) |F (u)− F (υ)| ≲ |u− υ| (|u|p + |υ|p) .

Remark 4.1. The model example of a nonlinearity obeying the conditions above is

F (u) = |u|p u, p ∈ (1,∞) for which the critical homogeneous Sobolev space is W̊ sc,2
x (Rn)

with sc := n
2
− 2

p
.

Definition 4.1. A function F : σ → C is called a (strong) solution to (1.1)− (1.2)
if it lies in the class

C0
t

(
[0, T ] ; W̊ s,2

x (Rn)
)
∩ Lp+2

t L
np(p+2)

4
x (σ)

and obey:

(4.4) u (t, x) = V (t)φ (x) +

m∑
k=1

αkVk (t, x) +

m∑
k=1

αkGk (t, x) +G0 (t, x) ,

where

V (t) = 𭟋−1 [UL (t, ξ) φ̂ (ξ)] , Vk (t, x) = 𭟋−1 [UL (λk, ξ) φ̂ (ξ)] ,

(4.5) Gk (t, x) = 𭟋−1

 λk∫
t0

UL (λk − τ, ξ) F̂ (τ, ξ) dτ

 ,

G0 (t, x) = 𭟋−1

 t∫
t0

UL (t− τ, ξ) F̂ (τ, ξ) dτ

 .
We say that u is a global solution if T = ∞.

Theorem 4.1. Assume the Condıtons 2.1, 3.1, 4.1 are satisfied. Let 0 ≤ s ≤ 1,

φ ∈ W̊ s,2 (Rn) and n ≥ 1. Then there exists η0 = η0 (n) > 0 such that if 0 < η ≤ η0
such that

∥|∇|s UL (t)φ∥
L

p+2
t Lσ

x(σ)
≤ η,

then here exists a unique solution u to (4.1) on [0, T ] × Rn. Moreover, the following
estimates hold

∥|∇|s ULu∥Lp+2
t Lσ

x(σ)
≤ 2η,

∥|∇|s u∥S0(σ) + ∥u∥C0([0,T ];W̊s,2(Rn)) ≲ ∥|∇|s φ∥L2
x(Rn) + η1+p,

∥u∥S0(σ;H) ≲ ∥φ∥L2
x(Rn;H) , r = r (p, n) =

2n (p+ 2)

2 (n− 2) + np
.
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Proof. We apply the standard fixed point argument. More precisely, using the

estimates (3.26), the equalitie (3.11) and by reasoning as in [10, Theorem 4.1], we obtain
the conclusion.
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In this study, time nonlocal Schrödinger equation with spatial periodic boundary

condition in fractional power Hilbert spaces is investigated. Stable first order of accuracy
Rothe difference scheme and second order of accuracy Crack-Nicholson difference scheme

for the numerical solution of this problem is presented. The main theorem on the stability

of these difference schemes are established. Numerical results are given.
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The paper considers the parallel algorithm for solving the retrospective inverse prob-

lem of identifying the initial value for a subdiffusion equation. To solve this inverse

problem, the regularized iterative conjugate gradient method is used. At each iteration
of the method, we need to solve the auxiliary direct initial-value problem. Using the

finite difference scheme, the direct problem is reduced to a large number of systems of

linear algebraic equations.

The following subdiffusion equation is considered:

∂αu

∂tα
− Lu = f(x, t), x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T,

u(x, 0) = φ(x),x ∈ Ω.

Here, x = (x1, x2, . . . , xn) ∈ Ω =
n∏

i=1
[ai, bi], 0 < α < 1, and L is an elliptic operator

Lu =
n∑

i=1

∂

∂xi

(
ki(x, t)

∂u

∂xi

)
, xi ∈ (ai, bi), 0 < t ≤ T.

The fractional Caputo derivative with order α is defined as
∂αu

∂tα
=

1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s
(t− s)−α,x ∈ Ω, 0 < t ≤ T.

In the present work, we study the inverse problem of restoring the initial condition φ(x).

Additional information on the solution is given in the form

u(x, t) = φ(x),x ∈ Ω.

For the numerical solution of the inverse problem, the iterative conjugate gradient

method [1] is used, while at each iteration the direct problem is solved by using an
implicit difference scheme [2]. The direct problem is reduced to solving a large system

of linear algebraic equation with triadiagonal (for the 1D case) or block tridiagonal (for

the 2D and larger dimensions) matrix at each time step.
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Maximizing Schatten p-Norms and Related
Isoperimetric Inequalities

Durvudkhan SURAGAN1,a
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E-mail: adurvudkhan.suragan@nu.edu.kz

In this presentation, we explore the intriguing realm of Schatten p-norms and their

relationship with Riesz potential operators within domains of fixed measure. Our main
result unveils the ball as an optimal maximizer for these integer order Schatten p-norms.

This finding extends to the polyharmonic Newton potential operator, a vital component

in nonlocal boundary value problems associated with the poly-Laplacian. This extension
mirrors the pioneering work of M. Kac and T. Kalmenov, originally established for the

Laplacian, leading us to the derivation of isoperimetric inequalities for the eigenvalues.

These inequalities, akin to the classical Rayleigh–Faber–Krahn and Hong–Krahn–Szego
counterparts, further illuminate the structural properties of the polyharmonic Newton

potential operator.

In our presentation, we delve into the broader landscape by considering extensions of
these results to convolution-type integral operators, offering explicit examples to eluci-

date our findings. Additionally, we present a new insight into the multidimensional

MEMS (micro-electro mechanical systems) problem within the Euclidean space Rd,
where d ≥ 3. Our investigation reveals that minimizing the pull-in voltage for this

problem involves the symmetrization of the permittivity profile, and we establish the

foundation for this claim through the application of Talenti’s comparison principle. This
talk is based on our joint works [1]-[3].

Funding: The author was partially supported by a Simons Foundation Travel Support
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Critical Exponents for the Exterior Evolution
Problems
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The paper studies the large-time behavior of solutions to the Robin problem for

PDEs with critical nonlinearities. For the considered problems, nonexistence results are
obtained, which complements the interesting recent results by Ikeda et al. [1], where

critical cases were left open. Moreover, our results provide partially answers to some

other open questions previously posed by Zhang [2] and Jleli-Samet [3]. The proof of
main results is based on methods of nonlinear capacity estimates specifically adapted to

the nature of the exterior domain. Furthermore, the difference in our approach lies in

the fact that we are considering a class of test functions with logarithmic arguments.

Funding: This research has been funded by the Science Committee of the Ministry of
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On Fourier Multiplier on Non-Commutative Torus and
Applications
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In this work, we deal with the Fourier multiplier on non-commutative torus and its

applications in non-commutative Harmonic analysis.
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On Solvability of Some Inverse Problems for a
Nonlocal Fourth-Order Parabolic Equation with

Multiple Involution
Batirkhan TURMETOV
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In this paper, the solvability of some inverse problems for a nonlocal analogue of a

fourth-order parabolic equation is studied. For this purpose, a nonlocal analogue of the
biharmonic operator is introduced. When defining this operator, transformations of the

involution type are used. In a parallelepiped, the eigenfunctions and eigenvalues of the

Dirichlet type problem for a nonlocal biharmonic operator are studied. The eigenfunc-
tions and eigenvalues for this problem are constructed explicitly and the completeness

of the system of eigenfunctions is proved. Two types of inverse problems on finding a

solution to the equation and its right-hand side are studied. In the first problem, the
right-hand side depending on the spatial variable is sought, and in the second problem,

a function depending on the time variable is found. The first problem is solved by using
the Fourier variable separation method, and the second problem by reducing it to solving

an integral equation. The theorems on the existence and uniqueness of the solution are

proved.

Note that similar problems in the case n = 2 of a classical parabolic equation in a

rectangular domain were studied in [1,2].
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Direct and Inverse Problems for the Burgers
Equation in Degenerating Domains

Madi Yergaliyev1,a,

1Institute of Mathematics and Mathematical Modeling, Almaty,
Kazakhstan

E-mail: aergaliev@math.kz

Let consider the following nonlinearly degenerating domain

Ω = {x, t | φ1(t) < x < φ2(t), 0 < t < T <∞},
with its cross section Ωt = {φ1(t) < x < φ2(t)} for a fixed value of the time variable

t ∈ (0, T ), with

φ1(0) = φ2(0).

The functions φ1(t) and φ2(t) are defined on [0, T ], and belong to C1(0, T ).

In the domain Ω consider the following inverse problem for the Burgers equation

∂ tu(x, t) + u(x, t)∂xu(x, t)− ν∂2xu(x, t) = w(t)ft(x), in Ω, (1)

∂jxu(φ1(t), t) = ∂jxu(φ2(t), t), j = 0, 1; t ∈ (0, T ), (2)

u(0, 0) = 0, (3)∫ φ2(t)

φ1(t)
u(x, t)dx = E(t), t ∈ (0, T ), (4)

where ν = const > 0 is a given constant and functions ft(x), E(t) satisfy the conditions
ft(x) ≡ f(x, t) ∈ L∞(0, T ;L∞(Ωt)), E(t) ∈W 1,∞(0, T ), E(0) = 0,

f̃(t) ≡
φ2(t)∫
φ1(t)

ft(x)dx ̸= 0, ∀t ∈ (t0, T ), t0 > 0, f̃(t) = O(φ(t)), t→ 0+,
(5)

here φ(t) = φ2(t)− φ1(t).

The work will study the question of solvability of the inverse problem, namely, what
conditions must be satisfied by the functions along which the domain changes in order

for the inverse problem to be uniquely solvable. This work is a logical continuation of

works [1,2].
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Hardy and Rellich Type Identities and Inequalities
Related to Baouendi-Grushin Operator
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Recall from [1] that the Hardy inequality for Baouendi-Grushin vector fields takes
the form∫

Rn

(
|∇xf |2 + |x|2γ |∇yf |2

)
dz ≥

(
Q− 2

2

)2 ∫
Rn

(
|x|2γ

|x|2+2γ + (1 + γ)2|y|2

)
|f |2dz,

(1)

where z = (x1, ..., xm, y1, ..., yk) = (x, y) ∈ Rm × Rk with n = m + k, m, k ≥ 1, γ ≥
0, Q = m + (1 + γ)k and f ∈ C∞

0

(
Rm × Rk\{(0, 0)}

)
. Here, ∇xf and ∇yf are the

gradients of f in the variables x and y, respectively.

In this talk, we discuss sharp remainder formulae for Hardy and Rellich inequalities
related to the Baouendi-Grushin operator involving radial derivatives in some of the

variables, which improve the classical Hardy and Rellich inequalities as well as (1). If

time permits, we also discuss magnetic functional inequalities related to the Baouendi-
Grushin operator with Aharonov-Bohm type magnetic field.

This talk is based on the joint research with Ari Laptev (Imperial College Lon-

don, UK) and Michael Ruzhansky (Ghent University, Belgium) [2]-[3], and with Amir
Zhangirbayev.
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Iterated Discrete Hardy-Type Inequalities: the Case
θ < P
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Let 0 < q, p, θ <∞ and 1
p
+ 1

p′ = 1. Let φ = {φi}∞i=1 be a sequence of non-negative

numbers, u = {ui}∞i=1 and w = {wi}∞i=1 be sequences of positive numbers, which will be

called the weight sequences. Let us denote by lp,u the space of all sequences f = {fi}∞i=1
of real numbers such that

∥f∥p,u =

( ∞∑
i=1

|uifi|p
) 1

p

<∞, 1 ≤ p <∞.

For any f ∈ lp,u we characterize the following iterated discrete Hardy-type inequality
with three weights ∞∑

n=1

wθ
n

(
n∑

k=1

∣∣∣∣∣φk

k∑
i=1

fi

∣∣∣∣∣
q) θ

q


1
θ

≤ C

( ∞∑
i=1

|uifi|p
) 1

p

, (1)

where C is a positive constant independent of f . The dual discrete version of inequality

(1) has the form ∞∑
n=1

wθ
n

( ∞∑
k=n

∣∣∣∣∣φk

∞∑
i=k

fi

∣∣∣∣∣
q) θ

q


1
θ

≤ C

( ∞∑
i=1

|uifi|p
) 1

p

. (2)

Paper [1] also contains results for inequality (2) for the case 0 < p ≤ 1, but when p ≤
min{q, θ} <∞. In paper [2], discrete Hardy-type inequality (1) have been characterized

for the same relations between p, θ and q, namely, for the cases p ≤ θ < ∞, 0 < q
and θ < p < ∞, 0 < q < θ. Here we consider the most difficult case θ < p < ∞ and

0 < θ < q or, equivalently, 0 < θ < min{p, q} <∞, which has no explicit

Theorem 1. Let 0 < θ < min{p, q} < ∞, p > 1. Then inequality (1) holds if and
only if B2 <∞, where

B2 =

 ∞∑
i=1

u−p′

i

 i∑
j=1

u−p′

j


p(θ−1)
p−θ

 ∞∑
n=i

wθ
n

(
n∑

k=i

φq
k

) θ
q


p

p−θ


p−θ
pθ

.

Moreover, C ≈ B2, where C is the best constant in (1).

Theorem 2. Let 0 < θ < min{p, q} < ∞, p > 1. Then inequality (2) holds if and
only if B1 <∞, where

B1 =

 ∞∑
i=1

u−p′

i

 ∞∑
j=i

u−p′

j


p(θ−1)
p−θ

 i∑
n=1

wθ
n

(
i∑

k=n

φq
k

) θ
q


p

p−θ


p−θ
pθ

.

Moreover, C ≈ B1, where C is the best constant in (2).

Theorem 3. Let 0 < θ < min{p, q} < ∞, 0 < p ≤ 1. Then inequality (1) holds if

and only if B4 <∞, where

B4 =

 ∞∑
i=1

u
− θp

p−θ

i

 ∞∑
n=i

wθ
n

(
n∑

k=i

φq
k

) θ
q


p

p−θ


p−θ
pθ

.

Moreover, C ≈ B4, where C is the best constant in (1).
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Theorem 4. Let 0 < θ < min{p, q} < ∞, 0 < p ≤ 1. Then inequality (2) holds if

and only if B3 <∞, where

B3 =

 ∞∑
i=1

u
− θp

p−θ

i

 i∑
n=1

wθ
n

(
i∑

k=n

φq
k

) θ
q


p

p−θ


p−θ
pθ

.

Moreover, C ≈ B3, where C is the best constant in (2).
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We consider the problem of construction of control automatic systems by given (n−s)-
dimensional program manifold Ω(t) ≡ ω(t, x) = 0, in the following form:

ẋ(t) = f(t, x)−B1ξ, ξ = φ(σ), σ = PTω, t ∈ I = [0,∞), (1)

where x ∈ Rn is a state vector of the object, f ∈ Rn is a vector-function, satisfying to
conditions of existence of a solution x(t) = 0, and B1 ∈ Rn×r, P ∈ Rn×r are matrices,

ω ∈ Rs(s ≤ n) is a vector, ξ ∈ Rr is a differentiable on σ vector-function, satisfying of
local quadratic connection

φ(0) = 0 ∧ 0 < σTφ(σ) ≤ σTKσ, ∀σ ̸= 0,

K1 ≤
∂φ(σ)

∂σ
≤ K2, {K = KT > 0} ∈ Rr×r,Ki = KT

i > 0.
(2)

Definition 1. The program manifold Ω(t) of automatic control system is called
absolutely stable if it is globally stable on solutions of system (1) for any ω(t0, x0) and

φ(σ), satisfying conditions (2).

Differentiating ω from (2) by time t based on (1) we obtain

ω̇ =
∂ ω

∂ t
+Hf (t, x)−HB1ξ, ξ = φ(σ), σ = PTω, t ∈ I = [0,∞), (16)

Choosing the function F (t, x, ω) in linear form with respect to ω we obtain the fol-
lowing system:

ω̇(t) = Aω −Bξ, ξ = φ(σ), σ = PTω, t ∈ I = [0,∞).

Here nonlinearity satisfies to generalized conditions (15), and F (t, x, ω) = −Aω,A ∈

Rs×s, H =
∂ω

∂x
,B = HB1.

For system (3), we construct the Lyapunov function in the following form

V (ω) = ωTLω, (4)

where L is a positive-definite symmetric s × s matrix. The derivative of the function
V (ω)in time t by virtue of the system (17) and taking into account the condition (15)
will take the form

−V̇ (ω) = ωTCω + σTKξ, (5)

if the following matrix equalities are true

AT l + LA = C, (6)

PK = 2LB. (7)

Theorem 1. Let a definite-positive matrix C be given, the nonlinearity φ(σ) satisfies
the conditions (2), there exists a matrix L. satisfying equation (6). Then for the absolute
stability of the program manifold Ω(t) with respect to a given vector function ω it is

enough to perform matrix equalities (6), (7).
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