<div dir="ltr"><div><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt;color:rgb(0,0,0)">Sayın Liste Üyeleri,</span></div><div style="font-family:Arial,Helvetica,sans-serif,serif,EmojiFont"><div style="min-height:1em"><font style="font-family:tahoma,sans-serif,serif,EmojiFont"><font style="color:rgb(0,0,0)"><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt">Hacettepe Üniversitesi Matematik Bölümü </span><span class="gmail-x_x_x_x_x_currentHitHighlight" id="gmail-x_x_x_x_x_0.019807808455092335" name="x_x_x_x_x_searchHitInReadingPane" style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:11pt"><span class="gmail-x_x_highlight" id="gmail-x_x_0.13737835499165407" name="x_x_searchHitInReadingPane" style="font-size:10pt">genel</span></span><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt"> </span><span class="gmail-x_x_x_x_x_highlight" id="gmail-x_x_x_x_x_0.4594894601924153" name="x_x_x_x_x_searchHitInReadingPane" style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:11pt"><span class="gmail-x_x_highlight" id="gmail-x_x_0.7814465733928448" name="x_x_searchHitInReadingPane" style="font-size:10pt">seminer</span></span><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt">leri</span><span style="font-family:Cambria,Georgia,serif,serif,EmojiFont"><span style="font-size:11pt;font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont"><span style="font-size:10pt"><span style="font-size:10pt"> kapsamında, 0</span><span style="font-size:10pt">8</span></span></span></span><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt"> Kasım 2023 tarihinde </span></font><font color="#000000"><span style="font-family:Cambria,Georgia,serif,serif,EmojiFont"><span style="font-size:10pt;font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont">saat 15:30'da, zoom üzerinden Orta Doğu Teknik Üniversitesi</span><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt">'nden</span><span style="font-size:10pt;font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont"> Ebru Solak</span></span></font><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt">'ın</span><font color="#000000"><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt"> vereceği </span></font><font style="color:rgb(0,0,0)"><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt">''</span></font></font><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt"></span><span style="font-size:10pt;font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont">A Torsion Free Abelian Group of Finite Rank is Called Almost Completely</span><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt">''</span><font color="#000000" style="font-family:tahoma,sans-serif,serif,EmojiFont"><span style="font-family:Cambria,Georgia,serif,serif,EmojiFont"><b><span style="font-size:10pt;font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont"> </span></b><span style="font-size:10pt;font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont">başlıklı konuşmaya ilgilenen herkesi bekleriz. Konuşma özeti ve zoom bağlantı bilgileri aşağıda yer almaktadır.</span></span></font></div><div style="min-height:1em;color:rgb(0,0,0)"><br></div><div style="min-height:1em;color:rgb(0,0,0)"><font style="font-family:tahoma,sans-serif,serif,EmojiFont"><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt">Saygılarımla,</span></font></div></div><div style="color:rgb(0,0,0);font-family:Arial,Helvetica,sans-serif,serif,EmojiFont;min-height:1em"><font style="font-family:tahoma,sans-serif,serif,EmojiFont"><br></font></div><div style="color:rgb(0,0,0);font-family:Arial,Helvetica,sans-serif,serif,EmojiFont;min-height:1em"><font style="font-family:tahoma,sans-serif,serif,EmojiFont"><span style="font-family:"Courier New",monospace,serif,EmojiFont;font-size:8pt">Prof. Dr. </span><span style="font-family:"Courier New",monospace,serif,EmojiFont;font-size:8pt">Aslı Pekcan Yıldız</span></font></div><div style="color:rgb(0,0,0);font-family:Arial,Helvetica,sans-serif,serif,EmojiFont;min-height:1em"><font style="font-family:tahoma,sans-serif,serif,EmojiFont"><span style="font-family:Constantia,"Hoefler Text",serif,serif,EmojiFont;font-size:10pt"><span class="gmail-x_x_highlight" id="gmail-x_x_0.5400392205026432" name="x_x_searchHitInReadingPane" style="font-family:"Courier New",monospace,serif,EmojiFont;font-size:8pt">Seminer</span><span style="font-family:"Courier New",monospace,serif,EmojiFont;font-size:8pt"> Koordinatörü</span></span></font></div><span style="color:rgb(0,0,0);font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt">-----------------------------------------------------</span><span style="color:rgb(0,0,0);font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:16px"></span><span style="color:rgb(0,0,0);font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:16px"></span><p style="margin-top:0px;margin-bottom:0px;color:rgb(0,0,0);font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:16px"></p><p style="margin-top:0px;margin-bottom:0px;color:rgb(0,0,0);font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:16px"><a href="https://www.google.com/url?q=https://us06web.zoom.us/j/82280362919?pwd%3DuasrbxOeAXHAp62mO9b8021aXpbenl.1&sa=D&source=calendar&usd=2&usg=AOvVaw0qWMtlLrDgvoAgDCYpdrri" target="_blank" rel="noopener noreferrer" style="font-family:Roboto,Helvetica,Arial,sans-serif;font-size:14px;background-color:rgb(241,243,244)"><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt"></span></a><a href="https://www.google.com/url?q=https://us06web.zoom.us/j/85771160616?pwd%3D859rhHNnjJbxedHwKVaP0MOv643DvP.1&sa=D&source=calendar&usd=2&usg=AOvVaw0WDdef3ZD-Shz2O2tNAiK4" target="_blank" rel="noopener noreferrer" style="font-family:Roboto,Arial,sans-serif;font-size:14px;letter-spacing:0.2px"><span style="font-size:10pt;font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont">https://us06web.zoom.us/j/85771160616?pwd=859rhHNnjJbxedHwKVaP0MOv643DvP.1</span></a><span style="color:rgb(60,64,67);font-size:10pt;letter-spacing:0.2px"> </span></p><p style="margin-top:0px;margin-bottom:0px;color:rgb(0,0,0);font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:16px"><span style="color:rgb(60,64,67);font-size:10pt;letter-spacing:0.2px">Toplantı Kimliği: 857 7116 0616 Parola: 779957</span><span style="color:rgb(60,64,67);font-size:10pt;background-color:rgb(241,243,244)"></span><br></p><p style="margin-top:0px;margin-bottom:0px;color:rgb(0,0,0);font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:16px"><font color="#3c4043" style="font-family:Roboto,Helvetica,Arial,sans-serif,serif,EmojiFont"><span style="font-size:10pt;font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont">---------------------------------------------------------</span></font></p><p style="margin-top:0px;margin-bottom:0px;color:rgb(0,0,0);font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:16px"><font color="#3c4043" style="font-family:Roboto,Helvetica,Arial,sans-serif,serif,EmojiFont"><span style="font-size:14px;background-color:rgb(241,243,244)"><b style="color:rgb(34,34,34);font-family:tahoma,sans-serif,serif,EmojiFont;font-size:small"><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt;background-color:rgb(255,255,255)">Konuşmacı</span></b><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;color:rgb(34,34,34);font-size:10pt"><span style="font-size:10pt;background-color:rgb(255,255,255)">: </span><span style="font-size:10pt;background-color:rgb(255,255,255)">Ebru Solak</span></span><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:16px"></span></span></font></p><font color="#3c4043" style="font-size:16px;font-family:Roboto,Helvetica,Arial,sans-serif,serif,EmojiFont"><div style="color:rgb(34,34,34);font-family:Cambria,Georgia,serif,serif,EmojiFont;font-size:small"><b style="font-family:tahoma,sans-serif"><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt">Konuşma Başlığı</span></b><span style="font-size:10pt;font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont">: </span><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt"></span><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt">A Torsion Free Abelian Group of Finite Rank is Called Almost Completely</span><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt"></span><div style="font-family:Arial,Helvetica,sans-serif,serif,EmojiFont"><b style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:11pt;color:rgb(15,20,25)"><span style="font-size:10pt">Konuşma Özeti:  </span></b><span style="font-size:10pt;font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont">A torsion free abelian group of finite rank is called almost completely </span><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt">decomposable if it has a completely decomposable subgroup of finite index. We </span><span style="font-size:10pt;font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont">consider classes of p-reduced almost completely decomposable groups with a (finite) </span><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt">p-group as regulator quotient, and an inverted forest as critical typeset. A p-reduced </span><span style="font-size:10pt;font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont">almost completely decomposable group with regulator quotient a finite p-group is </span><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt">associated to an integer coordinate matrix.</span><div><span style="font-size:10pt;font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont">A p-local, p-reduced almost completely decomposable group of type (1, 2) is called </span><span style="font-size:10pt;font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont">a (1, 2)-group. It is possible to determine the near-isomorphism classes of indecom</span><span style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont;font-size:10pt">posable (1, 2)-groups by using coordinate matrices.</span></div></div></div></font></div>