<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body>
<p> </p>
<div class="moz-text-html" lang="x-unicode">
<div dir="ltr">
<div class="gmail-moz-text-html" lang="x-unicode">
<div dir="ltr"><br>
<div lang="x-unicode">
<div align="center"><big><b><big>Welcome to the 2023 Fall
talks of ODTU-Bilkent Algebraic Geometry Seminars</big></b></big><b><br>
</b></div>
<div align="center"><i>since 2000</i><br>
</div>
<div align="center"><b><b>=================================================================</b></b><br>
<br>
This week the <a
href="http://www.bilkent.edu.tr/~sertoz/agseminar.htm"
target="_blank" moz-do-not-send="true">ODTU-Bilkent
Algebraic Geometry Seminar</a> is <b>online</b><br>
<br>
<i><font color="#ff00ff">This talk will begin at <u><b>15:40</b></u><u> (GMT+3)</u></font></i><br>
<a
href="https://www.timeanddate.com/worldclock/fixedtime.html?msg=ODT%C3%9C-Bilkent+Algebraic+Geometry+Seminar&iso=20231208T1540&p1=19&ah=1"
target="_blank" moz-do-not-send="true">Please check
your time difference between Ankara and your city here</a><br>
<b>=================================================================</b></div>
<div align="center">
<div align="center"><img
src="cid:part1.eFLLH90t.DfQBpZ01@bilkent.edu.tr"
alt="" class="" width="528" height="454"></div>
<div align="center"><b><br>
</b><i>Johannes Vermeer (1632-1675)<br>
The glass of wine (1659)</i><br>
</div>
<div align="left"><b><b><font color="#ff0000">Speaker:</font>
<a
href="https://math.boun.edu.tr/tr/k-ilhan-ikeda"
moz-do-not-send="true">K. İlhan İkeda</a><font
color="#ff0000"><font color="#000000"> <br>
</font></font></b></b><b><b><font
color="#ff0000">Affiliation: </font><i>Boğaziçi</i></b></b><b><b><font
color="#ff0000"><br>
Title:<font color="#000000"> Kapranov's
higher-dimensional Langlands reciprocity
principle for GL(n)<br>
</font></font></b></b><b><b><font
color="#ff0000"><br>
</font></b></b></div>
</div>
<div align="left"><b><b><font color="#ff0000">Abstract: </font>Abelian
class field theory, which describes (including the
arithmetic of) all abelian extensions of local and
global fields using algebraic and analytic objects
related to the ground field via Artin reciprocity
laws has undergone two generalizations. The first
one, which is still largely conjectural, is the
non-abelian class field theory of Langlands, is an
extreme generalization of the abelian class field
theory, describes the whole absolute Galois groups
of local and global fields using automorphic objects
related to the ground field via the celebrated
Langlands reciprocity principles, (and more
generally via functoriality principles). The second
generalization is the higher-dimensional class field
theory of Kato and Parshin, which describes
(including the arithmetic of) all abelian extensions
of higher-dimensional local fields and
higher-dimensional global fields (function fields of
schemes of finite type over ℤ) using this time
K-groups of objects related to the ground field via
Kato-Parshin reciprocity laws. <br>
So it is a very natural question to ask the
possibility to construct higher-dimensional
Langlands reciprocity principle. In this direction,
as an answer to this question, Kapranov proposed a
conjectural framework for higher-dimensional
Langlands reciprocity principle for GL(n). In this
talk, we plan to sketch this conjectural framework
of Kapranov (where we plan to focus on the local
case only).<br>
<font color="#ff0000"><font color="#000000"><br>
</font></font></b></b></div>
<div align="left"><font color="#ff0000"><font
color="#000000"> <br>
</font></font></div>
<div align="left"><font color="#ff0000"><font
color="#000000"><b><font color="#ff0000">Date:<font
color="#000000"> 8 December 2023</font></font></b>,
<b>Friday</b></font></font><br>
</div>
<div align="left"><font color="#ff0000"><font
color="#000000"><b><font color="#ff0000">Time: </font>15:40 <i>(GMT+3)</i></b><br>
<b><font color="#ff0000">Place: </font></b><font
color="#ff0000"><font color="#000000"><b>Zoom</b></font></font></font></font></div>
<blockquote>
<p><font color="#ff0000"><font color="#000000"><font
color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">One
day before the seminar, an announcement
with the Zoom meeting link will be sent to
those who registered with Sertöz.<br>
</b></b></font></font></font></font></p>
<p><font color="#ff0000"><font color="#000000"><font
color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">If
you have registered before for one of the
previous talks, there is no need to
register again; you will automatically
receive a link for this talk too.<br>
</b></b></font></font></font></font></p>
<p><font color="#ff0000"><font color="#000000"><font
color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">If
you have not registered before, please
contact him at <a
href="mailto:sertoz@bilkent.edu.tr?subject=Zoom%20Seminar%20Address%20Request"
target="_blank" moz-do-not-send="true">sertoz@bilkent.edu.tr</a>.</b></b></font></font></font></font></p>
</blockquote>
<div align="left"><br>
</div>
<div align="left">You are most cordially invited to
attend.</div>
<div align="left"><br>
</div>
<div align="left">Ali Sinan Sertöz</div>
<div align="left"><font size="1"><i>(PS: To unsubscribe
from this list please send me a note.)</i></font> </div>
<hr>
<pre cols="72">----------------------------------------------------------------------------
Ali Sinan Sertöz
Bilkent University, Department of Mathematics, 06800 Ankara, Türkiye
Office: (90)-(312) - 290 1490
Department: (90)-(312) - 266 4377
Fax: (90)-(312) - 290 1797
e-mail: <a href="mailto:sertoz@bilkent.edu.tr" target="_blank"
class="gmail-moz-txt-link-freetext moz-txt-link-freetext"
moz-do-not-send="true">sertoz@bilkent.edu.tr</a>
Web: <a href="http://sertoz.bilkent.edu.tr" target="_blank"
moz-do-not-send="true">sertoz.bilkent.edu.tr</a>
----------------------------------------------------------------------------</pre>
</div>
</div>
</div>
</div>
</div>
</body>
</html>