<!DOCTYPE html>
<html>
  <head>
    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p> </p>
    <div class="moz-text-html" lang="x-unicode">
      <div dir="ltr">
        <div class="gmail-moz-text-html" lang="x-unicode">
          <div dir="ltr"><br>
            <div lang="x-unicode">
              <div align="center"><big><b><big>Welcome to the 2023 Fall
                      talks of ODTU-Bilkent Algebraic Geometry Seminars</big></b></big><b><br>
                </b></div>
              <div align="center"><i>since 2000</i><br>
              </div>
              <div align="center"><b><b>=================================================================</b></b><br>
                <br>
                This week the <a
                  href="http://www.bilkent.edu.tr/~sertoz/agseminar.htm"
                  target="_blank" moz-do-not-send="true">ODTU-Bilkent
                  Algebraic Geometry Seminar</a>  is <b>online</b><br>
                <br>
                <i><font color="#ff00ff">This talk will begin at <u><b>15:40</b></u><u> (GMT+3)</u></font></i><br>
                <a
href="https://www.timeanddate.com/worldclock/fixedtime.html?msg=ODT%C3%9C-Bilkent+Algebraic+Geometry+Seminar&iso=20231215T1540&p1=19&ah=1"
                  target="_blank" moz-do-not-send="true">Please check
                  your time difference between Ankara and your city here</a><br>
                <b>=================================================================</b></div>
              <div align="center">
                <div align="center"><img
                    src="cid:part1.xH3chPsI.MEYTsij0@bilkent.edu.tr"
                    alt="" class="" width="529" height="625"></div>
                <div align="center"><b><br>
                  </b><i>Johannes Vermeer (1632-1675)<br>
                    Girl with a pearl earring (1665)</i><br>
                </div>
                <div align="left"><b><b><font color="#ff0000">Speaker:</font> 
                      <a href="http://www.fen.bilkent.edu.tr/%7Edegt/"
                        moz-do-not-send="true">Alexander Degtyarev</a><font
                        color="#ff0000"><font color="#000000"> <br>
                        </font></font></b></b><b><b><font
                        color="#ff0000">Affiliation: </font><i>Bilkent</i></b></b><b><b><font
                        color="#ff0000"><br>
                        Title:<font color="#000000"> Lines on singular
                          quartic surfaces via Vinberg<br>
                          <br>
                        </font></font></b></b><b><b><font
                        color="#ff0000"><br>
                      </font></b></b></div>
              </div>
              <div align="left"><b><b><font color="#ff0000">Abstract:  </font>Large
                    configurations of lines (or, more generally,
                    rational curves of low degree) on algebraic
                    surfaces  appear in various contexts, but only in
                    the case of cubic surfaces the picture is complete.
                    Our principal goal is the classification of large
                    configurations of lines on quasi-polarized
                    K3-surfaces <i>in the presence of singularities</i>.
                    To the best of our knowledge, no attempt has been
                    made to attack this problem from the
                    lattice-theoretical, based on the global Torelli
                    theorem, point of view; some partial results were
                    obtained  by various authors using ``classical''
                    algebraic geometry, but very little is known. The
                    difficulty is that, given a polarized
                    N\'eron--Severi lattice, computing the classes of
                    smooth rational curves depends on the choice of a
                    Weyl chamber of a certain root lattice, which is not
                    unique.<br>
                    <br>
                    We show that this ambiguity disappears and the
                    algorithm becomes deterministic provided that <i>sufficiently
                      many classes of lines are fixed</i>. Based on this
                    fact, Vinberg's algorithm, and a combinatorial
                    version of elliptic pencils, we develop an algorithm
                    that, in principle, would list all extended Fano
                    graphs. After testing it on octic K3-surfaces, we
                    turn to the most classical case of simple quartics
                    where, prior to our work, only an upper bound of 64
                    lines (Veniani, same as in the smooth case) and an
                    example of 52 lines (the speaker) were known. We
                    show that, <i>in the presence of singularities</i>,
                    the sharp upper bound is indeed 52, substantiating
                    the long standing conjecture (by the speaker) that
                    the upper bound is reduced by the presence of smooth
                    rational curves of lower degree.<br>
                    <br>
                    We also extend the classification (I. Itenberg, A.S.
                    Sertöz, and the speaker) of large configurations of
                    lines on <i>smooth</i> quartics down to 49 lines.
                    Remarkably, most of these configurations were known
                    before.<br>
                    <br>
                    This project was conceived and partially completed
                    during our joint stay at the Max-Planck-Institut
                    f\ür Mathematik, Bonn. The speaker is partially
                    supported by TÜBİTAK project 123F111.<font
                      color="#ff0000"><font color="#000000"><br>
                      </font></font></b></b></div>
              <div align="left"><font color="#ff0000"><font
                    color="#000000">  <br>
                  </font></font></div>
              <div align="left"><font color="#ff0000"><font
                    color="#000000"><b><font color="#ff0000">Date:<font
                          color="#000000"> 15 December 2023</font></font></b>,
                    <b>Friday</b></font></font><br>
              </div>
              <div align="left"><font color="#ff0000"><font
                    color="#000000"><b><font color="#ff0000">Time: </font>15:40 <i>(GMT+3)</i></b><br>
                    <b><font color="#ff0000">Place: </font></b><font
                      color="#ff0000"><font color="#000000"><b>Zoom</b></font></font></font></font></div>
              <blockquote>
                <p><font color="#ff0000"><font color="#000000"><font
                        color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">One
                              day before the seminar, an announcement
                              with the Zoom meeting link will be sent to
                              those who registered with Sertöz.<br>
                            </b></b></font></font></font></font></p>
                <p><font color="#ff0000"><font color="#000000"><font
                        color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">If
                              you have registered before for one of the
                              previous talks, there is no need to
                              register again; you will automatically
                              receive a link for this talk too.<br>
                            </b></b></font></font></font></font></p>
                <p><font color="#ff0000"><font color="#000000"><font
                        color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">If
                              you have not registered before, please
                              contact him at <a
href="mailto:sertoz@bilkent.edu.tr?subject=Zoom%20Seminar%20Address%20Request"
                                target="_blank" moz-do-not-send="true">sertoz@bilkent.edu.tr</a>.</b></b></font></font></font></font></p>
              </blockquote>
              <div align="left"><br>
              </div>
              <div align="left">You are most cordially invited to
                attend.</div>
              <div align="left"><br>
              </div>
              <div align="left">Ali Sinan Sertöz</div>
              <div align="left"><font size="1"><i>(PS: To unsubscribe
                    from this list please send me a note.)</i></font> </div>
              <hr>
              <pre cols="72">---------------------------------------------------------------------------- 
Ali Sinan Sertöz
Bilkent University, Department of Mathematics, 06800 Ankara, Türkiye
Office: (90)-(312) - 290 1490
Department: (90)-(312) - 266 4377
Fax: (90)-(312) - 290 1797
e-mail: <a href="mailto:sertoz@bilkent.edu.tr" target="_blank"
              class="gmail-moz-txt-link-freetext moz-txt-link-freetext"
              moz-do-not-send="true">sertoz@bilkent.edu.tr</a> 
Web: <a href="http://sertoz.bilkent.edu.tr" target="_blank"
              moz-do-not-send="true">sertoz.bilkent.edu.tr</a> 
----------------------------------------------------------------------------</pre>
            </div>
          </div>
        </div>
      </div>
    </div>
  </body>
</html>