<div dir="ltr"><div><div style="min-height:1em"><font style=""><font style="color:rgb(0,0,0)" face="times new roman, serif">Sayın Liste Üyeleri,</font></font></div><div style="min-height:1em"><font face="times new roman, serif"><font style=""><font style="color:rgb(0,0,0)">Hacettepe Üniversitesi Matematik Bölümü <span id="m_-1429932979578075308gmail-x_x_x_x_x_x_0.019807808455092335" name="x_x_x_x_x_x_searchHitInReadingPane" style=""><span id="m_-1429932979578075308gmail-x_x_x_0.13737835499165407" name="x_x_x_searchHitInReadingPane" style="">genel</span></span> <span id="m_-1429932979578075308gmail-x_x_x_x_x_x_0.4594894601924153" name="x_x_x_x_x_x_searchHitInReadingPane" style=""><span id="m_-1429932979578075308gmail-x_x_x_0.7814465733928448" name="x_x_x_searchHitInReadingPane" style="">seminer</span></span>leri kapsamında, 20 Aralık 2023 tarihinde </font><font color="#000000">saat 15:30'da, bölümümüz Yaşar Ataman toplantı salonunda, Ankara Yıldırım Beyazıt Üniversitesi'nden Selim Bahadır'ın</font></font><font style=""><font color="#000000"> vereceği </font><font style="color:rgb(0,0,0)">''</font></font>On graphs all of whose total dominating sequences have the same length''<font color="#000000" style=""><b> </b>başlıklı konuşmaya ilgilenen herkesi bekleriz. </font></font></div><div style="min-height:1em;color:rgb(0,0,0)"><font face="times new roman, serif"><br></font></div><div style="min-height:1em;color:rgb(0,0,0)"><font face="times new roman, serif">Saygılarımla,</font></div><div style="min-height:1em;color:rgb(0,0,0)"><font face="times new roman, serif"><br></font></div><div style="min-height:1em;color:rgb(0,0,0)"><div style="min-height:1em"><font style="" face="times new roman, serif" size="1">Prof. Dr. Aslı Pekcan Yıldız</font></div><div style="min-height:1em"><font style="" face="times new roman, serif" size="1"><span id="m_-1429932979578075308gmail-x_x_x_0.5400392205026432" name="x_x_x_searchHitInReadingPane" style="">Seminer</span> Koordinatörü</font></div></div></div><div><font face="times new roman, serif">---------------------------------------------------------------------------------------------------------------</font></div><font face="times new roman, serif"><b>Konuşma Başlığı: </b>

On graphs all of whose total dominating sequences have the same length<br clear="all"></font><div><font face="times new roman, serif"><b>Konuşma Özeti</b>: <span style="color:rgb(0,0,0)">A sequence of vertices in a graph $G$ without isolated vertices is called a total dominating sequence if every vertex $v$ in the sequence has a neighbor which is adjacent to no vertex preceding $v$ in the sequence, and at the end every vertex of $G$ has at least one neighbor in the sequence. </span><span style="color:rgb(0,0,0)">Minimum and maximum lengths of a total dominating sequence is the total domination number of $G$ (denoted by $\gamma_t(G)$) and the Grundy total domination </span><span style="color:rgb(0,0,0)">number of $G$ (denoted by $\gamma_{gr}^t(G)$), respectively.</span></font></div><pre class="gmail-aLF-aPX-K0-aPE" style="margin-top:0px;margin-bottom:0px;color:rgb(0,0,0)"><font face="times new roman, serif" style="">In this paper, we study graphs where all total dominating sequences have the same length. For every positive integer $k$, we call $G$ a total $k$-uniform graph if every total dominating sequence of $G$ is of length $k$, that is, $\gamma_t(G)=\gamma_{gr}^t(G)=k$. We prove that there is no total $k$-uniform graph when $k$ is odd. In addition, we present a total 4-uniform graph which stands as a counterexample for a conjecture by Gologranc et al. 2021 and provide a connected total 8-uniform graph. Moreover, we prove that every total $k$-uniform, connected and false twin-free graph is regular for every even $k$. We also show that there is no total $k$-uniform chordal connected graph with $k\geq 4$ and characterize all total $k$-uniform chordal graphs.</font></pre></div>