<!DOCTYPE html>
<html>
  <head>
    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p> </p>
    <div class="moz-text-html" lang="x-unicode">
      <div dir="ltr">
        <div class="gmail-moz-text-html" lang="x-unicode">
          <div dir="ltr"><br>
            <div lang="x-unicode">
              <div align="center"><big><b><big>Welcome to the 2024
                      Spring talks of ODTU-Bilkent Algebraic Geometry
                      Seminars</big></b></big><b><br>
                </b></div>
              <div align="center"><i>since 2000</i><br>
              </div>
              <div align="center"><b><b>=================================================================</b></b><br>
                <br>
                This week the <a
                  href="http://www.bilkent.edu.tr/~sertoz/agseminar.htm"
                  target="_blank" moz-do-not-send="true">ODTU-Bilkent
                  Algebraic Geometry Seminar</a>  is <b>online</b><br>
                <br>
                <i><font color="#ff00ff">This talk will begin at <u><b>15:40</b></u><u> (GMT+3)</u></font></i><br>
                <a
href="https://www.timeanddate.com/worldclock/fixedtime.html?msg=ODT%C3%9C-Bilkent+Algebraic+Geometry+Seminar&iso=20240405T1540&p1=19&ah=1"
                  target="_blank" moz-do-not-send="true">Please check
                  your time difference between Ankara and your city here</a><br>
                <b>=================================================================</b></div>
              <div align="center">
                <div align="center"><img
                    src="cid:part1.YS4RILXc.hu9q2qU9@bilkent.edu.tr"
                    alt="" class="" width="395" height="387"></div>
                <div align="center"><b><br>
                  </b><i>Edgar Degas (1834-1917)<br>
                    Blue dancers (1897)</i><br>
                </div>
                <div align="left"><b><b><font color="#ff0000">Speaker:</font>
                      <a
href="https://sites.google.com/view/eniskaya/home"
                        moz-do-not-send="true">Enis Kaya</a><font
                        color="#ff0000"><font color="#000000"> <br>
                        </font></font></b></b><b><b><font
                        color="#ff0000">Affiliation: </font><i>KU
                        Leuven</i></b></b></div>
                <div align="left"><b><b><i><br>
                      </i></b></b></div>
                <div align="left"><b><b><font color="#ff0000"> Title:<font
                          color="#000000"> p-adic Integration Theories
                          on Curves</font></font></b></b><b><b><font
                        color="#ff0000"><br>
                      </font></b></b></div>
                <div align="left"><b><b><font color="#ff0000"><br>
                      </font></b></b></div>
              </div>
              <div align="left"><b><b><font color="#ff0000">Abstract:  </font></b></b>For
                curves over the field of p-adic numbers, there are two
                notions of p-adic integration: Berkovich-Coleman
                integrals which can be performed locally, and Vologodsky
                integrals with desirable number-theoretic properties.
                These integrals have the advantage of being insensitive
                to the reduction type at p, but are known to coincide
                with Coleman integrals in the case of good reduction.
                Moreover, there are practical algorithms available to
                compute Coleman integrals.<br>
                <br>
                Berkovich-Coleman and Vologodsky integrals, however,
                differ in general. In this talk, we give a formula for
                passing between them. To do so, we use combinatorial
                ideas informed by tropical geometry. We also introduce
                algorithms for computing Berkovich-Coleman and
                Vologodsky integrals on hyperelliptic curves of bad
                reduction. By covering such a curve by certain open
                spaces, we reduce the computation of Berkovich-Coleman
                integrals to the known algorithms on hyperelliptic
                curves of good reduction. We then convert the
                Berkovich-Coleman integrals into Vologodsky integrals
                using our formula. We illustrate our algorithm with a
                numerical example.<br>
                <br>
                This talk is partly based on joint work with Eric Katz
                from the Ohio State University.<br>
                <font color="#ff0000"><font color="#000000">  <br>
                  </font></font></div>
              <div align="left"><font color="#ff0000"><font
                    color="#000000"><b><font color="#ff0000">Date:<font
                          color="#000000"> 5 April 2024</font></font></b>,
                    <b>Friday</b></font></font><br>
              </div>
              <div align="left"><font color="#ff0000"><font
                    color="#000000"><b><font color="#ff0000">Time: </font>15:40 <i>(GMT+3)</i></b><br>
                    <b><font color="#ff0000">Place: </font></b><font
                      color="#ff0000"><font color="#000000"><b>Zoom</b></font></font></font></font></div>
              <blockquote>
                <p><font color="#ff0000"><font color="#000000"><font
                        color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">One
                              day before the seminar, an announcement
                              with the Zoom meeting link will be sent to
                              those who registered with Sertöz.<br>
                            </b></b></font></font></font></font></p>
                <p><font color="#ff0000"><font color="#000000"><font
                        color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">If
                              you have registered before for one of the
                              previous talks, there is no need to
                              register again; you will automatically
                              receive a link for this talk too.<br>
                            </b></b></font></font></font></font></p>
                <p><font color="#ff0000"><font color="#000000"><font
                        color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">If
                              you have not registered before, please
                              contact him at <a
href="mailto:sertoz@bilkent.edu.tr?subject=Zoom%20Seminar%20Address%20Request"
                                target="_blank" moz-do-not-send="true">sertoz@bilkent.edu.tr</a>.</b></b></font></font></font></font></p>
              </blockquote>
              <div align="left"><br>
              </div>
              <div align="left">You are most cordially invited to
                attend.</div>
              <div align="left"><br>
              </div>
              <div align="left">Ali Sinan Sertöz</div>
              <div align="left"><font size="1"><i>(PS: To unsubscribe
                    from this list please send me a note.)</i></font> </div>
              <hr>
              <pre cols="72">---------------------------------------------------------------------------- 
Ali Sinan Sertöz
Bilkent University, Department of Mathematics, 06800 Ankara, Türkiye
Office: (90)-(312) - 290 1490
Department: (90)-(312) - 266 4377
Fax: (90)-(312) - 290 1797
e-mail: <a href="mailto:sertoz@bilkent.edu.tr" target="_blank"
              class="gmail-moz-txt-link-freetext moz-txt-link-freetext"
              moz-do-not-send="true">sertoz@bilkent.edu.tr</a> 
Web: <a href="http://sertoz.bilkent.edu.tr" target="_blank"
              moz-do-not-send="true">sertoz.bilkent.edu.tr</a> 
----------------------------------------------------------------------------</pre>
            </div>
          </div>
        </div>
      </div>
    </div>
  </body>
</html>