<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body>
<div dir="ltr">
<div><b>Speaker:</b> Atabey Kaygun- Istanbul Teknik Üniversitesi</div>
<div><strong>Date:</strong> Wednesday, 16 October 2024 </div>
<div><strong>Time:</strong> 15:00 - 16:00 </div>
<div><strong>Location:</strong> Galatasaray Üniversitesi, Ortaköy,
Çırağan Cd. No:36, 34349 Beşiktaş - H304<br>
</div>
<div><br>
</div>
<div>
<div><font size="4"><b
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;">Title:</b><span
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;"> Distributive Laws and Cross Simplicial Groups</span><br
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><br
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">Abstract: There is a way of writing an algebraic structure</span><br
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">(a group or an algebra or a category) as a product of two substructures. </span><br
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">This is known as a distributive law, and also as a factorization system. After giving examples, </span><br
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">I am going to introduce crossed simplicial groups. Crossed simplicial groups are defined by a distributive law between the </span><br
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">simplicial category $\Delta$ and a suitable collection of groups. My main aim is to </span><br
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">explain how one can extend the notion of 'simplicial homotopy' to crossed simplicial </span><br
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">groups. We'll end with a very interesting example coming from Leibniz algebras that are </span><br
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">non-skew-symmet</span><span
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">ric analogues of Lie algebras.</span></font><wbr
style="color: rgb(0, 0, 0); font-family: monospace; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: pre; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"></div>
<div>
<p><strong>Note:</strong></p>
<ul>
<li>To access the complete seminar calendar please visit
<a class="moz-txt-link-freetext" href="https://matematik.gsu.edu.tr/tr/arastirma/seminerler">https://matematik.gsu.edu.tr/tr/arastirma/seminerler</a><br>
and to add to your calendar use <a
href="https://calendar.google.com/calendar/ical/mathseminar%40galatasaray.education/public/basic.ics"
target="_blank" moz-do-not-send="true">ical url.</a></li>
<li>Participants from outside Galatasaray Üniversitesi are
kindly requested to send an email to
<a class="moz-txt-link-abbreviated" href="mailto:mathseminar@galatasaray.education">mathseminar@galatasaray.education</a> before 13:00 on the day
of the seminar.</li>
</ul>
<div>---</div>
</div>
<div>Galatasaray Üniversitesi Matematik Bölümü<br>
<a href="https://matematik.gsu.edu.tr/" moz-do-not-send="true"
class="moz-txt-link-freetext">https://matematik.gsu.edu.tr/</a><br>
</div>
<div><br>
</div>
</div>
</div>
<div id="grammalecte_menu_main_button_shadow_host"
style="width: 0px; height: 0px;"></div>
</body>
</html>