<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /></head><body style='font-size: 10pt'>
<div class="pre" style="margin: 0; padding: 0; font-family: monospace"><br />Değerli Matematikçiler,</div>
<div class="pre" style="margin: 0; padding: 0; font-family: monospace"> </div>
<div class="pre" style="margin: 0; padding: 0; font-family: monospace">Feza Gürsey Fizik ve Matematik UygAr Merkezinin Harish-Chandra Research Institute ve IPM-Tahran</div>
<div class="pre" style="margin: 0; padding: 0; font-family: monospace">ile ortak düzenlediği Sayılar Teorisi seminerleri çerçevesinde, <strong>24 Ekim Perşembe günü saat 17:00</strong>'da Zoom üzeinden yapılacak seminer detayları aşağıda verilmiştir.</div>
<div class="pre" style="margin: 0; padding: 0; font-family: monospace"> </div>
<div class="pre" style="margin: 0; padding: 0; font-family: monospace">İyi çalışmalar dilerim,</div>
<div class="pre" style="margin: 0; padding: 0; font-family: monospace">ilhan ikeda</div>
<div class="pre" style="margin: 0; padding: 0; font-family: monospace"> </div>
<div class="pre" style="margin: 0; padding: 0; font-family: monospace"><br />-------- Özgün ileti --------<br />Konu: FGC-HRI-IPM Number Theory Seminars<br />Tarih: 2024-10-19 10:04<br />Gönderici: FGC-HRI-IPM Number Theory Seminars <<a href="mailto:fgc-hri-ipm-numbertheory@googlegroups.com">fgc-hri-ipm-numbertheory@googlegroups.com</a>><br />Alıcı: FGC-HRI-IPM Number Theory Seminars <<a href="mailto:fgc-hri-ipm-numbertheory@googlegroups.com">fgc-hri-ipm-numbertheory@googlegroups.com</a>><br /><br />Dear all,<br /><br />Our next talk in the FGC-HRI-IPM number theory seminars is Thursday Oct 24. <span style="color: #ba372a;">Please note the unusual date</span> and find the details of the talk below.<br /><br /><strong>Speaker:</strong> Ahmad El-Guindy, Cairo University<br /><br /><strong>Title:</strong> Some l-adic properties of modular forms with quadratic nebentypus and l-regular partition congruences<br /><strong>Abstract:</strong> In this talk, we discuss a framework for studying l-regular partitions by defining a sequence of modular forms of level l and quadratic character which encode the l-adic behavior of the so-called l-regular partitions. We show that this sequence is congruent modulo increasing powers of l to level 1 modular forms of increasing weights. We then prove that certain modules generated by our sequence are isomorphic to certain subspaces of level 1 cusp forms of weight independent of the power of l, leading to a uniform bound on the ranks of those modules and consequently to l-adic relations between l-regular partition values. This generalizes earlier work of Folsom, Kent and Ono on the partition function, where the relevant forms had no nebentypus,<br />and is joint work with Mostafa Ghazy.<br /><br /><strong>Date and Time:</strong> Thursday, October 24, 19:30 Allahabad, 17:30 Tahran, 17:00 Istanbul<br /><br /><strong>Zoom link:</strong> <a href="https://kocun.zoom.us/j/99715471656" target="_blank" rel="noopener noreferrer">https://kocun.zoom.us/j/99715471656</a><br /><strong>Meeting ID:</strong> 997 1547 1656<br /><strong>passcode:</strong> 848084<br /><br /><strong>ICS-File:</strong> <a href="https://researchseminars.org/seminar/FGC-IPM/ics" target="_blank" rel="noopener noreferrer">https://researchseminars.org/seminar/FGC-IPM/ics</a><br /><br />We hope to see you all, <br /><br /> -- <br />You received this message because you are subscribed to the Google Groups "FGC-HRI-IPM Number Theory Seminars" group. To unsubscribe from this group and stop receiving emails from it, send<br />an email to <a href="mailto:fgc-hri-ipm-numbertheory+unsubscribe@googlegroups.com">fgc-hri-ipm-numbertheory+unsubscribe@googlegroups.com</a>.<br />To view this discussion on the web visit<br /><a href="https://groups.google.com/d/msgid/fgc-hri-ipm-numbertheory/000a97a7-5425-4202-ba81-f62c2127368cn%40googlegroups.com" target="_blank" rel="noopener noreferrer">https://groups.google.com/d/msgid/fgc-hri-ipm-numbertheory/000a97a7-5425-4202-ba81-f62c2127368cn%40googlegroups.com</a><br />[<a href="https://groups.google.com/d/msgid/fgc-hri-ipm-numbertheory/000a97a7-5425-4202-ba81-f62c2127368cn%40googlegroups.com?utm_medium=email&utm_source=footer" target="_blank" rel="noopener noreferrer">1</a>].<br /><br /><br />Links:<br />------<br />[1] <a href="https://groups.google.com/d/msgid/fgc-hri-ipm-numbertheory/000a97a7-5425-4202-ba81-f62c2127368cn%40googlegroups.com?utm_medium=email&utm_source=footer" target="_blank" rel="noopener noreferrer">https://groups.google.com/d/msgid/fgc-hri-ipm-numbertheory/000a97a7-5425-4202-ba81-f62c2127368cn%40googlegroups.com?utm_medium=email&utm_source=footer</a></div>
</body></html>