<!DOCTYPE html>
<html>
  <head>
    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p> </p>
    <div class="moz-text-html" lang="x-unicode">
      <div dir="ltr">
        <div class="gmail-moz-text-html" lang="x-unicode">
          <div dir="ltr"><br>
            <div lang="x-unicode">
              <div align="center"><big><b><big>Welcome to the 2024 Fall
                      talks of ODTU-Bilkent Algebraic Geometry Seminars</big></b></big><b><br>
                </b></div>
              <div align="center"><i>since 2000</i><br>
              </div>
              <div align="center"><b><b>=================================================================</b></b><br>
                <br>
                This week the <a
                  href="http://www.bilkent.edu.tr/~sertoz/agseminar.htm"
                  target="_blank" moz-do-not-send="true">ODTU-Bilkent
                  Algebraic Geometry Seminar</a>  is <b>online</b><br>
                <br>
                <i><font color="#ff00ff">This talk will begin at <u><b>15:40</b></u><u> (GMT+3)</u></font></i><br>
                <a
href="https://www.timeanddate.com/worldclock/fixedtime.html?msg=ODT%C3%9C-Bilkent+Algebraic+Geometry+Seminar&iso=20241025T1540&p1=19&ah=1"
                  target="_blank" moz-do-not-send="true">Please check
                  your time difference between Ankara and your city here</a><br>
                <b>=================================================================</b></div>
              <div align="center">
                <div align="center"><img
                    src="cid:part1.W9qlMVpQ.ms07pG9q@bilkent.edu.tr"
                    alt="" width="391" height="480" class=""></div>
              </div>
              <div align="center"><br>
              </div>
              <div align="center"><i>Claude Monet (1840-1926)</i><br>
                <div align="left"><b><b><font color="#ff0000"><br>
                      </font></b></b></div>
                <div align="left"><b><b><font color="#ff0000">Speaker:</font>
                      <a href="http://www.fen.bilkent.edu.tr/%7Edegt/"
                        moz-do-not-send="true">Alexander Degtyarev</a><font
                        color="#ff0000"><font color="#000000"> <br>
                        </font></font></b></b><b><b><font
                        color="#ff0000">Affiliation: </font><i>Bilkent<br>
                      </i></b></b></div>
                <div align="left"><b><b><i><br>
                      </i></b></b></div>
                <div align="left"><b><b><font color="#ff0000"> Title: </font></b>Real
                    plane sextic curves with smooth real part<b><font
                        color="#ff0000"><font color="#000000"> <br>
                          <br>
                        </font></font></b></b></div>
              </div>
              <div align="left"><b><b><font color="#ff0000">Abstract: </font></b></b>We
                have obtained the complete deformation classification of
                singular real plane sextic curves with smooth real part,
                i.e., those without real singular points. This was made
                possible due to the fact that, under the assumption,
                contrary to the general case, the equivariant
                equisingular deformation type is determined by the
                so-called real homological type in its most naïve sense,
                i.e., the homological information about the
                polarization, singularities, and real structure; one
                does not need to compute the fundamental polyhedron of
                the group generated by reflections and identify the
                classes of ovals therein. Should time permit, I will
                outline our proof of this theorem.<br>
                <br>
                As usual, this classification leads us to a number of
                observations, some of which we have already managed to
                generalize. Thus, we have an Arnol’d-Gudkov-Rokhlin type
                congruence for close to maximal surfaces (and, hence,
                even degree curves) with certain singularities. Another
                observation (which has not been quite understood yet and
                may turn out K3-specific) is that the contraction of any
                empty oval of a type I real scheme results in a
                bijection of the sets of deformation classes.<br>
                (joined work with Ilia Itenberg)<br>
                <font color="#ff0000"><font color="#000000">  <br>
                  </font></font></div>
              <div align="left"><font color="#ff0000"><font
                    color="#000000"><b><font color="#ff0000">Date:<font
                          color="#000000"> 25 October 2024</font></font></b>,
                    <b>Friday</b></font></font><br>
              </div>
              <div align="left"><font color="#ff0000"><font
                    color="#000000"><b><font color="#ff0000">Time: </font>15:40 <i>(GMT+3)</i></b><br>
                    <b><font color="#ff0000">Place: </font></b><font
                      color="#ff0000"><font color="#000000"><b>Zoom</b></font></font></font></font></div>
              <blockquote>
                <p><font color="#ff0000"><font color="#000000"><font
                        color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">One
                              day before the seminar, an announcement
                              with the Zoom meeting link will be sent to
                              those who registered with Sertöz.<br>
                            </b></b></font></font></font></font></p>
                <p><font color="#ff0000"><font color="#000000"><font
                        color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">If
                              you have registered before for one of the
                              previous talks, there is no need to
                              register again; you will automatically
                              receive a link for this talk too.<br>
                            </b></b></font></font></font></font></p>
                <p><font color="#ff0000"><font color="#000000"><font
                        color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">If
                              you have not registered before, please
                              contact him at <a
href="mailto:sertoz@bilkent.edu.tr?subject=Zoom%20Seminar%20Address%20Request"
                                target="_blank" moz-do-not-send="true">sertoz@bilkent.edu.tr</a>.</b></b></font></font></font></font></p>
              </blockquote>
              <div align="left"><br>
              </div>
              <div align="left">You are most cordially invited to
                attend.</div>
              <div align="left"><br>
              </div>
              <div align="left">Ali Sinan Sertöz</div>
              <div align="left"><font size="1"><i>(PS: To unsubscribe
                    from this list please send me a note.)</i></font> </div>
              <hr>
              <pre cols="72">---------------------------------------------------------------------------- 
Ali Sinan Sertöz
Bilkent University, Department of Mathematics, 06800 Ankara, Türkiye
Office: (90)-(312) - 290 1490
Department: (90)-(312) - 266 4377
Fax: (90)-(312) - 290 1797
e-mail: <a href="mailto:sertoz@bilkent.edu.tr" target="_blank"
              class="gmail-moz-txt-link-freetext moz-txt-link-freetext"
              moz-do-not-send="true">sertoz@bilkent.edu.tr</a> 
Web: <a href="http://sertoz.bilkent.edu.tr" target="_blank"
              moz-do-not-send="true">sertoz.bilkent.edu.tr</a> 
----------------------------------------------------------------------------</pre>
            </div>
          </div>
        </div>
      </div>
    </div>
  </body>
</html>