<div dir="ltr">Merhaba,<div><br></div><div>Bu haftaki Feza Gürsey (FGC-IPM-HRI) sayılar teorisi seminerinin detaylarını altta bulabilirsiniz.</div><div><br></div><div>Sevgiler,</div><div><br></div><div><div><font face="Sans Serif"><b style="">Date and Time: </b>Thursday, October 24, 5pm</font></div><div><div><div><div><font face="Sans Serif"><b>Zoom link:</b> <a href="https://kocun.zoom.us/j/99715471656" rel="nofollow" target="_blank">https://kocun.zoom.us/j/99715471656</a></font></div><div><font face="Sans Serif"><b>Meeting ID: </b><span style="color:rgb(35,35,51);letter-spacing:0.42px">997 1547 1656</span></font></div><div><font face="Sans Serif"><span style="color:rgb(35,35,51);letter-spacing:0.42px"><b>passcode:</b> </span>848084</font></div></div></div></div></div><div><br></div><div><div><font face="Sans Serif"><b style="">Speaker</b>: Ahmad El-Guindy, Cairo University</font></div><div><div><div><font face="Sans Serif"><b>Title: </b>Some l-adic properties of modular forms with quadratic nebentypus and l-regular partition congruences</font></div><div><font face="Sans Serif"><b style="">Abstract:</b> <span style="color:rgb(0,0,0)">In this talk, we discuss a framework for studying l-regular partitions by defining a sequence of modular forms of level l and quadratic character which encode the l-adic behavior of the so-called l-regular partitions. We show that this sequence is congruent modulo increasing powers of l to level 1 modular forms of increasing weights. We then prove that certain modules generated by our sequence are isomorphic to certain subspaces of level 1 cusp forms of weight independent of the power of l, leading to a uniform bound on the ranks of those modules and consequently to l-adic relations between l-regular partition values. This generalizes earlier work of Folsom, Kent and Ono on the partition function, where the relevant forms had no nebentypus, and is joint work with Mostafa Ghazy.</span></font></div></div></div><div><font face="Sans Serif"><span style="color:rgb(0,0,0)"><br></span></font></div><div><font face="Sans Serif"><span style="color:rgb(0,0,0)"><br></span></font></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">---------- Forwarded message ---------<br>From: <strong class="gmail_sendername" dir="auto">FGC-HRI-IPM  Number Theory Seminars</strong> <span dir="auto"><<a href="mailto:fgc-hri-ipm-numbertheory@googlegroups.com">fgc-hri-ipm-numbertheory@googlegroups.com</a>></span><br>Date: Sat, Oct 19, 2024 at 10:04 AM<br>Subject: FGC-HRI-IPM Number Theory Seminars<br>To: FGC-HRI-IPM  Number Theory Seminars <<a href="mailto:fgc-hri-ipm-numbertheory@googlegroups.com">fgc-hri-ipm-numbertheory@googlegroups.com</a>><br></div><br><br><font size="3" face="Sans Serif">Dear all,</font><div><font size="3" face="Sans Serif"><br></font></div><div><font size="3" face="Sans Serif">Our next talk in the FGC-HRI-IPM number theory seminars is Thursday Oct 24. Please note the unusual date and find the details of the talk below.</font></div><div><font size="3" face="Sans Serif"><b><br></b></font></div><div><font size="3" face="Sans Serif"><b>Speaker</b>: Ahmad El-Guindy, Cairo University</font></div><div><div><div><font size="3" face="Sans Serif"><b>Title: </b>Some l-adic properties of modular forms with quadratic nebentypus and l-regular partition congruences</font></div><div><font size="3" face="Sans Serif"><b>Abstract:</b> <span style="color:rgb(0,0,0)">In this talk, we discuss a framework for studying l-regular partitions by defining a sequence of modular forms of level l and quadratic character which encode the l-adic behavior of the so-called l-regular partitions. We show that this sequence is congruent modulo increasing powers of l to level 1 modular forms of increasing weights. We then prove that certain modules generated by our sequence are isomorphic to certain subspaces of level 1 cusp forms of weight independent of the power of l, leading to a uniform bound on the ranks of those modules and consequently to l-adic relations between l-regular partition values. This generalizes earlier work of Folsom, Kent and Ono on the partition function, where the relevant forms had no nebentypus, and is joint work with Mostafa Ghazy.</span></font></div><font size="3" face="Sans Serif"><br></font></div><div><font size="3" face="Sans Serif"><br></font></div></div><div><div><font size="3" face="Sans Serif"><b>Date and Time: </b>Thursday, October 24, 19:30 Allahabad, 17:30 Tahran, 17:00 Istanbul</font></div><div><div><div><div><font size="3" face="Sans Serif"><b>Zoom link:</b> <a href="https://kocun.zoom.us/j/99715471656" rel="nofollow" target="_blank">https://kocun.zoom.us/j/99715471656</a></font></div><div><font size="3" face="Sans Serif"><b>Meeting ID: </b><span style="color:rgb(35,35,51);letter-spacing:0.42px">997 1547 1656</span></font></div><div><font size="3" face="Sans Serif"><span style="color:rgb(35,35,51);letter-spacing:0.42px"><b>passcode:</b> </span>848084</font></div></div></div></div></div><div><font size="3" face="Sans Serif"><br></font></div><div><div><div><div><font size="3" face="Sans Serif"><b>ICS-File: </b><a href="https://researchseminars.org/seminar/FGC-IPM/ics" rel="nofollow" target="_blank">https://researchseminars.org/seminar/FGC-IPM/ics</a></font></div></div><div><font size="3" face="Sans Serif"><br></font></div><div><font size="3" face="Sans Serif">We hope to see you all,</font></div></div></div>

<p></p>

-- <br>
You received this message because you are subscribed to the Google Groups "FGC-HRI-IPM  Number Theory Seminars" group.<br>
To unsubscribe from this group and stop receiving emails from it, send an email to <a href="mailto:fgc-hri-ipm-numbertheory+unsubscribe@googlegroups.com" target="_blank">fgc-hri-ipm-numbertheory+unsubscribe@googlegroups.com</a>.<br>
To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/fgc-hri-ipm-numbertheory/000a97a7-5425-4202-ba81-f62c2127368cn%40googlegroups.com?utm_medium=email&utm_source=footer" target="_blank">https://groups.google.com/d/msgid/fgc-hri-ipm-numbertheory/000a97a7-5425-4202-ba81-f62c2127368cn%40googlegroups.com</a>.<br>
</div></div></div>