ARITHMETIC PROGRESSIONS IN GENERIC SETS

FARUK TEMUR

ABSTRACT. In this short note we aim to study the problem of existence of arithmetic pro-

gressions in a generic subset of {1,2,..., N}. We observe that by considering almost every set
obeying a density lower bound instead of every set we get very different, and much stronger
results.

1. INTRODUCTION

Study of arithmetic progressions in certain subsets of [N] := {1,2,..., N} spawned the large
and fast developing field of additive combinatorics. For a short account of this history see the
introduction of [2], for more comprehensive accounts [6, 8]. But all efforts in this field appear
to be concentrated on the existence of arithmetic progressions either in every subset in [N] with
a lower bound on density, or in specific sets like primes. In this short note we will discuss the
existence of arithmetic progressions in generic subsets of [N]| with a lower bound on density.
We will observe that by considering almost every set obeying a density lower bound instead of
every set we get very different, and much stronger results.

We formalize genericity using selector variables, as in [1, 5]. Let &,,n € [IN] be independent,
identically distributed random variables on a probability space (€2, F,P) with P[§, = 1] = N7
and P[¢, = 0] =1 — N° with 0 < § < 1. In this case {n&,},en] are random subsets of [N].
Then, for which ¢ do we have

(1) lim P [{n,}nepn has at least one k-term AP] — 17
N—o0

It turns out that this question can be answered briefly.
Theorem 1. The statement (1) holds if and only if 6 < 2/k.

This presents a very different picture compared to the deterministic case. By [3], that
improves upon the well-known Behrend bound we know that there are sets A C [N] that
contains no three term arithmetic progression with

Nlogl/4 N)
22\/5‘ /logy, N ’

Conversely, it is known by the work of Kelley and Meka [4] if A contains no 3-term AP then

\A[:Q(

|A‘ S e*Q(lOgl/ll N)

For comparison, in our formulation this means § > 0 is not possible if we consider every subset

of [N].
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2. PROOF OF OUR THEOREM

Before going to the proof we present a heuristic argument that may be helpful in guiding
future research on similar problems. Suppose we pick an arbitrary w, then the set {n&,}nein
will have essentially N'~° elements. So we can pick two elements from this set in essentially
N272 ways. Now once two elements are picked, to complete these to a k-term arithmetic
progression, we need k — 2 essentially fixed elements to be in our set. Each are in the set
with probability N9, so all of them are in the set with probability N~*~29  Summing these
probabilities over all possible choices of two fixed elements we get N?7%°. Then we may surmise
that an arbitrary set contain an arithmetic progression with high probability if the power 2 — ko
is positive.

We now present our proof. It actually yields much more information than is given in the
statement of the theorem. The proof proceeds via a multilinear form that counts aritmetic
progressions. The product structure of these forms is very suitable for using the independence
of selector variables.

Proof. We begin by observing that for any set {n&,}ncn) the random variable

N L= k-1
(2) Zs kN = Z Z H§n+jr
n=1 r=1 j=0

counts the number of k-term arithmetic progressions. This formulation is very handy to us as
will be seen below. If we take the expectation of this we obtain the average number of k-term
AP contained in {n&, }necn;. By independence of the selector variables we have

N

Lan

N 5=k N %= N O N—n
(3) EZn =3 > [[Eésw=> 3 NH=NH} { — J
n=1 r=1 35=0 n=1 r=1 n=1

We can estimate this last sum from above by

N N
N —n N~k N~k N(N +1) N2-ko N1-Fo
N,k(; _ N o |:N2 _ :| — _
2 T > N —n 2 2(k—1) 20k —1)
n=1
and estimate it from below by
N

Z [N —_n B 1i| NflcS _ Nkaé B Nl*k(; B N17k6'
k—1 20k —1) 2(k—1)

n=1
By the Markov inequality
N27k5 _ leké
2(k—1)
As N — oo the right hand side goes to zero if 6 > 2/k, and to 1/(2k —2) if 6 = 2/k. This
makes it plain that for § > 2/k the statement (1) is wrong.

It remains to prove that the statement holds for § < 2/k. This can be done using concentra-
tion inequalities, which investigate how much a random variable concentrates around its mean.
Since we already know the mean of our random variable, if there is enough concentration this
will suffice. Fortunately the simplest of concentration inequalities, the Chebyshev inequality
suffices. It asserts that if a random variable X has finite expectation and variance, then

P[X —EX|>MWVX] <22

P Zspn > 1] <EZspn <
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From this it immediately follows that
PXe(EX-AWVX,EX+AWVX)] >1-\"72

For this to be useful for us we need 1 < EX — A\/V X, which will be the case for us. Since
VX =EX?— (EX)? we calculate E X?.

N =D k4 k—1
(4) Ezék,]\] = Z Z E |:H5n+j7“ H€m+is] .
§=0 i=0

nm=1 r,s=1

To evaluate the expectation we will decompose the sum. We let

N — N —
A::{(n,m,r,s): 1<nm<N, ISTS{ nJ’ 1§s§{ mJ}

kE—1 k-1
B::{(n,m,r,s)EA:n—i—jr:m+7§sf0rsome0gj,igk;—l}
D::{(n,m,r,s)eA:forpairs (11, 71) # (i2,72), 0<yg,iu <k-—1, n+jl7‘:m+ils}.

So the set A is all possible quadruples in our sum, it is the cartesian product of the set

{(n,r):lgngN, 1<r< VZ:?J}

with itself, and we have calculated its cardinality as a sum in (3). The set B are those quadruples
that lie on hyperplanes given by equations n + jr = m + s. For fixed ¢,j the number of
quadruples in A that satisfy this inequality cannot be larger than N3, since fixing three of
the variables fix the last one. So |B| < k*N3. Finally the elements of D lie on two separate
hyperplanes, and for two fixed equations n + j;r = m + 4;s with (i1, j1) # (ia, j2) there are at
most N? quadruples in A satisfying both of these. Therefore we have |D| < k*NZ2. Then we
can partition our last sum in (4)

k—1 k—1 k—1 k—1 k—1 k—1
= Z E |:H £n+jr H €m+is] + Z E |: H €n+jr H £m+isi| + Z E [H £n+jr H €m+is] .
A\B 7=0 =0 B\D j=0 1=0 D j=0 i=0
We observe that
k-1 k—1
N72k6 < E H £n+j7" H £m+is < Nﬁk6~
j=0 i=0

for there are between k and 2k different selector variables in this product, and a selector
variable’s natural number powers are the same as itself. Therefore

k—1 k—1
Y E [H Entir Hgmm] < KAN2N R = A N2HO,
D =0 i=0

As in the product over A\ B no two selector variables are the same, all are independent and

we have
T T al N —n |72
ZE [Hgn-i-jrngm-i—is] < |A|NTH = [Z L — H N2k

A\B 7=0 =0 n=1

Finally, on B\ D only two selector variables can be the same, so

k-1 k—1
Z E [H En-tjr H gm-i-is} < L2 N3 N (@k=1)8 _ 1.2 \r3—(2k—1)8
=0

B\D  j=0
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Let @ = min{2 — k0,1 — §}. Since 6 < 2/k this number is positive. Combining our findings
V Zspy < KNP 4 g2N3CRD0 < QN (E Zsgw)
Hence picking A = N°/8

VYV Zsn S NYAE Zspn = EZspn — N4\/V Zsn > (1 = N"3E Zs v,
from which we conclude

PZspn > 1) >P[|Zspn — EZspn| < NE\/V Zsn] > 1— N7/4,

3. FUTURE DIRECTIONS

In additive combinatorics many different questions are pursued regarding arithmetic progres-
sions such as finding generalized arithmetic progressions, polynomial patterns, affine copies etc.
in sets with a lower bound on density, or in fixed special sets. All of these questions may be
pursued for generic sets as in this article.

Also we would like to highlight another approach, recently introduced in [7], that randomizes
sets via stochastic processes rather than selector variables. Study of arithmetic progressions in
generic sets can be carried out with this method as well. Especially if we want to randomize
a fixed set, such as squares, cubes etc., this method is perfectly suited. Consult [2] for studies
on arithmetic progressions in such sets.
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