<!DOCTYPE html>
<html>
  <head>
    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <span itemscope="" itemtype="http://schema.org/InformAction"><span
        itemprop="object" itemscope=""
        itemtype="http://schema.org/Event"></span></span>
    <table border="0" cellpadding="0" cellspacing="0"
      role="presentation" width="1861" height="271">
      <tbody>
        <tr>
          <td
style="font-size: 0; padding: 0; text-align: left; word-break: break-word;;padding-bottom:24px;">
            <div
style="font-family: Roboto, sans-serif;font-style: normal; font-weight: 400; font-size: 14px; line-height: 20px; letter-spacing: 0.2px;color: #3c4043; text-decoration: none;"
              class="primary-text" role="presentation"><span><b>Speaker</b>
                : Dr. Burak Kaya, Ortadogu Teknik Üniversitesi<br>
              </span></div>
            <div
style="font-family: Roboto, sans-serif;font-style: normal; font-weight: 400; font-size: 14px; line-height: 20px; letter-spacing: 0.2px;color: #3c4043; text-decoration: none;"
              class="primary-text" role="presentation"><span><br>
              </span></div>
            <div
style="font-family: Roboto, sans-serif;font-style: normal; font-weight: 400; font-size: 14px; line-height: 20px; letter-spacing: 0.2px;color: #3c4043; text-decoration: none;"
              class="primary-text" role="presentation"><span><b>Title</b>:
                Borel distinguishing number
                <p><b>Abstract</b>: In broadest sense, descriptive graph
                  combinatorics is the study of "definable" graphs on
                  Polish spaces that incorporates the descriptive set
                  theoretic point of view into the graph-theoretic point
                  of view. This is usually done by demanding various
                  graph-theoretic objects such as edge relations,
                  colorings, automorphisms to have
                  topological/measure-theoretic properties such as being
                  Borel, projective, continuous, closed and asking to
                  what extent classical results of graph theory
                  generalize to measurable setting. Over the last two
                  decades, numerous interesting results have been proven
                  which demonstrate that this point of view is more than
                  a mere specialization that lead to fruitful ideas. In
                  the first half of this talk, after recalling some
                  basic descriptive set theoretic notions, we shall give
                  a brief overview of some fundamental results in
                  descriptive graph combinatorics. In the second half of
                  this talk, we will cover some new results regarding
                  Borel distinguishing numbers. The results in the
                  second half are from a joint ongoing work with Onur
                  Bilge.</p>
              </span></div>
          </td>
        </tr>
        <tr>
          <td
style="font-size: 0; padding: 0; text-align: left; word-break: break-word;;padding-bottom:24px;">
            <div
style="font-family: Roboto, sans-serif;font-style: normal; font-weight: 400; font-size: 14px; line-height: 20px; letter-spacing: 0.2px;color: #3c4043; text-decoration: none;"
              class="primary-text" role="presentation"><span
                aria-hidden="true"><time itemprop="startDate"
                  datetime="20250212T120000Z"></time><time
                  itemprop="endDate" datetime="20250212T130000Z"></time></span>
              <table border="0" cellpadding="0" cellspacing="0"
                role="presentation" style="padding-bottom: 4px;">
                <tbody>
                  <tr>
                    <td>
                      <h2 class="primary-text"
style="font-size: 14px;color: #3c4043; text-decoration: none;font-weight: 700;-webkit-font-smoothing: antialiased;margin: 0; padding: 0;">When</h2>
                    </td>
                  </tr>
                </tbody>
              </table>
              <span>Wednesday Feb 12, 2025 ⋅ 3pm – 4pm (Türkiye Time)</span></div>
          </td>
        </tr>
        <tr>
          <td
style="font-size: 0; padding: 0; text-align: left; word-break: break-word;;padding-bottom:24px;">
            <div
style="font-family: Roboto, sans-serif;font-style: normal; font-weight: 400; font-size: 14px; line-height: 20px; letter-spacing: 0.2px;color: #3c4043; text-decoration: none;"
              class="primary-text" role="presentation">
              <table border="0" cellpadding="0" cellspacing="0"
                role="presentation" style="padding-bottom: 4px;">
                <tbody>
                  <tr>
                    <td>
                      <h2 class="primary-text"
style="font-size: 14px;color: #3c4043; text-decoration: none;font-weight: 700;-webkit-font-smoothing: antialiased;margin: 0; padding: 0;">Location</h2>
                    </td>
                  </tr>
                </tbody>
              </table>
              <span itemprop="location" itemscope=""
                itemtype="http://schema.org/Place"><span itemprop="name"
                  class="primary-text notranslate"
style="font-family: Roboto, sans-serif;font-style: normal; font-weight: 400; font-size: 14px; line-height: 20px; letter-spacing: 0.2px;color: #3c4043; text-decoration: none;">Room
                  h307 - Galatasaray Üniversitesi, Ortaköy, Çırağan Cd.
                  No:36, 34349 Beşiktaş/İstanbul, Türkiye</span></span></div>
          </td>
        </tr>
      </tbody>
    </table>
    <p><br>
    </p>
    <div id="grammalecte_menu_main_button_shadow_host"
      style="width: 0px; height: 0px;"></div>
  </body>
</html>