<!DOCTYPE html>
<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p>
    </p>
    <table border="0" cellspacing="0" cellpadding="0" width="100%"
      class="moz-header-part1 moz-main-header">
      <tbody>
        <tr>
          <td>
            <div class="moz-header-display-name" style="display:inline;">Subject:
            </div>
            ODTU-Bilkent Algebraic Geometry Seminar-Zoom-560</td>
        </tr>
        <tr>
          <td>
            <div class="moz-header-display-name" style="display:inline;">From:
            </div>
            Ali Sinan Sertöz <a class="moz-txt-link-rfc2396E" href="mailto:sertoz@bilkent.edu.tr"><sertoz@bilkent.edu.tr></a></td>
        </tr>
        <tr>
          <td>
            <div class="moz-header-display-name" style="display:inline;">Date:
            </div>
            18/02/2025, 6:25 pm</td>
        </tr>
      </tbody>
    </table>
    <br>
    <div class="moz-text-html" lang="x-unicode">
      <p> </p>
      <div class="moz-text-html" lang="x-unicode">
        <div dir="ltr">
          <div class="gmail-moz-text-html" lang="x-unicode">
            <div dir="ltr"><br>
              <div lang="x-unicode">
                <div align="center"><big><b><big>Welcome to the 2025
                        Spring talks of ODTU-Bilkent Algebraic Geometry
                        Seminars</big></b></big><b><br>
                  </b></div>
                <div align="center"><i>since 2000</i><br>
                </div>
                <div align="center"><b><b>=================================================================</b></b><br>
                  <br>
                  This week the <a
href="http://www.bilkent.edu.tr/~sertoz/agseminar.htm" target="_blank">ODTU-Bilkent
                    Algebraic Geometry Seminar</a>  is <b>online</b><br>
                  <br>
                  <i><font color="#ff00ff">This talk will begin at <u><b>15:40</b></u><u> (GMT+3)</u></font></i><br>
                  <a
href="https://www.timeanddate.com/worldclock/fixedtime.html?msg=ODT%C3%9C-Bilkent+Algebraic+Geometry+Seminar&iso=20250228T1540&p1=19&ah=1"
                    target="_blank">Please check your time difference
                    between Ankara and your city here</a><br>
                  <b>=================================================================</b></div>
                <div align="center">
                  <div align="center"><img
                      src="cid:part1.anBI6Aze.9QyOCX80@bilkent.edu.tr"
                      alt="" class=""></div>
                </div>
                <div align="center"><br>
                </div>
                <div align="center"><i>Van Gogh (1853-1890)</i><br>
                  <div align="left"><b><b><font color="#ff0000">Speaker: 
                        </font><a
                          href="http://www.fen.bilkent.edu.tr/%7Edegt/">Alexander
                          Degtyarev</a><font color="#ff0000"><font
                            color="#000000"> <br>
                          </font></font></b></b><b><b><font
                          color="#ff0000">Affiliation: </font><i>Bilkent</i></b></b></div>
                  <div align="left"><b><b><i><br>
                        </i></b></b></div>
                  <div align="left"><b><b><font color="#ff0000"> Title:
                        </font></b>Split hyperplane sections on
                      polarized K3-surfaces<br>
                      <b><font color="#ff0000"><font color="#000000"><br>
                          </font></font></b></b></div>
                </div>
                <div align="left"><b><b><font color="#ff0000">Abstract:
                      </font></b></b>I will discuss a new result which
                  is an unexpected outcome, following a question by Igor
                  Dolgachev, of a long saga about smooth rational curves
                  on (quasi-)polarized $K3$-surfaces. The best known
                  example of a $K3$-surface is a quartic  surface in
                  space. A simple dimension count shows that a typical
                  quartic contains no lines. Obviously, some of them do
                  and, according to B.~Segre, the maximal number is $64$
                  (an example is to be worked out). The key r\^ole in
                  Segre's proof (as well as those by other authors) is
                  played by plane sections that split completely into
                  four lines, constituting the dual adjacency graph
                  $K(4)$. A similar, though less used, phenomenon
                  happens for sextic $K3$-surfaces in~$\mathbb{P}^4$
                  (complete intersections of a quadric and a cubic): a
                  split hyperplane section consists of six lines, three
                  from each of the two rulings, on a hyperboloid (the
                  section of the quadric), thus constituting a $K(3,3)$.<br>
                  <br>
                  <div align="justify">Going further, in degrees $8$ and
                    $10$ one's sense of beauty suggests that the graphs
                    should be the $1$-skeleton of a $3$-cube and
                    Petersen graph, respectfully. However, further
                    advances to higher degrees required a systematic
                    study of such $3$-regular graphs and, to my great
                    surprise, I discovered that typically there is more
                    than one! Even for sextics one can also imagine the
                    $3$-prism (occurring when the hyperboloid itself
                    splits into two planes).<br>
                  </div>
                  <br>
                  The ultimate outcome of this work is the complete
                  classification of the graphs that occur as split
                  hyperplane sections (a few dozens) and that of the
                  configurations of split sections within a single
                  surface (manageable starting from degree $10$). In
                  particular, answering Igor's original question, the
                  maximal number of split sections on a quartic is $72$,
                  whereas on a sextic<br>
                  in $\mathbb{P}^4$ it is $40$ or $76$, depending on the
                  question asked. The ultimate champion is the Kummer
                  surface of degree~$12$: it has $90$ split hyperplane
                  sections.<br>
                  <br>
                  The tools used (probably, not to be mentioned) are a
                  fusion of graph theory and number theory, sewn
                  together by the geometric insight.<br>
                  <br>
                </div>
                <div align="left"><font color="#ff0000"><font
                      color="#000000"><br>
                    </font></font></div>
                <div align="left"><font color="#ff0000"><font
                      color="#000000"><b><font color="#ff0000">Date:<font
                            color="#000000"> 28 February 2025</font></font></b>,
                      <b>Friday</b></font></font><br>
                </div>
                <div align="left"><font color="#ff0000"><font
                      color="#000000"><b><font color="#ff0000">Time: </font>15:40 <i>(GMT+3)</i></b><br>
                      <b><font color="#ff0000">Place: </font></b><font
                        color="#ff0000"><font color="#000000"><b>Zoom</b></font></font></font></font></div>
                <blockquote>
                  <p><font color="#ff0000"><font color="#000000"><font
                          color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">One
                                day before the seminar, an announcement
                                with the Zoom meeting link will be sent
                                to those who registered with Sertöz.<br>
                              </b></b></font></font></font></font></p>
                  <p><font color="#ff0000"><font color="#000000"><font
                          color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">If
                                you have registered before for one of
                                the previous talks, there is no need to
                                register again; you will automatically
                                receive a link for this talk too.<br>
                              </b></b></font></font></font></font></p>
                  <p><font color="#ff0000"><font color="#000000"><font
                          color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">If
                                you have not registered before, please
                                contact him at <a
href="mailto:sertoz@bilkent.edu.tr?subject=Zoom%20Seminar%20Address%20Request"
                                  target="_blank">sertoz@bilkent.edu.tr</a>.</b></b></font></font></font></font></p>
                </blockquote>
                <div align="left"><br>
                </div>
                <div align="left">You are most cordially invited to
                  attend.</div>
                <div align="left"><br>
                </div>
                <div align="left">Ali Sinan Sertöz</div>
                <div align="left"><font size="1"><i>(PS: <a
href="mailto:sertoz@gmail.com?cc=sertoz%40bilkent.edu.tr&subject=Unsubscribe&body=Please%20remove%20this%20address%20from%20the%20announcement%20list%20of%20ODT%C3%9C-Bilkent%20Algebraic%20Geometry%20Seminars.">To
                        unsubscribe from this list please click here and
                        send the custom mail without changing anything</a>.)</i></font>
                </div>
                <hr>
                <pre cols="72">---------------------------------------------------------------------------- 
Ali Sinan Sertöz
Bilkent University, Department of Mathematics, 06800 Ankara, Türkiye
Office: (90)-(312) - 290 1490
Department: (90)-(312) - 266 4377
Fax: (90)-(312) - 290 1797
e-mail: <a href="mailto:sertoz@bilkent.edu.tr" target="_blank"
class="gmail-moz-txt-link-freetext moz-txt-link-freetext">sertoz@bilkent.edu.tr</a> 
Web: <a href="http://sertoz.bilkent.edu.tr" target="_blank">sertoz.bilkent.edu.tr</a> 
----------------------------------------------------------------------------</pre>
              </div>
            </div>
          </div>
        </div>
      </div>
    </div>
  </body>
</html>