





Bahçeşehir University, Istanbul, Türkiye Analysis & PDE Center, Ghent University, Ghent, Belgium Institute Mathematics & Math. Modeling, Almaty, Kazakhstan

# "Analysis and Applied Mathematics"

Weekly Online Seminar

Seminar leaders:

Prof. Allaberen Ashyralyev (BAU, Istanbul), Prof. Michael Ruzhansky (UGent, Ghent), Prof. Makhmud Sadybekov (IMMM, Almaty)

Date: Tuesday, March 11, 2025

<u>Time</u>: 13.00-14.00 (Istanbul) = 11.00-12.00 (Ghent) = 15.00-16.00 (Almaty)

Zoom link: https://us02web.zoom.us/j/6678270445?pwd=SFNmQUIvT0tRaHIDa-VYrN3I5bzJVQT09, Conference ID: 667 827 0445, Access code: 1

### Speaker:

## Prof. Dr. Alexander Meskhi

Kutaisi International University and TSU A. Razmadze Mathematical Institute, Georgia

# <u>Title:</u> **Multilinear fractional integrals: boundedness criteria and sharp estimates**

<u>Abstract</u>: Necessary and sufficient conditions on a measure  $\mu$  guaranteeing the boundedness of the multilinear fractional integral operator  $T_{\gamma,\mu}^{(m)}$  (defined with respect to a measure  $\mu$ ) from the product of Lorentz spaces  $\prod_{k=1}^{m} L_{\mu}^{r_k,s_k}$  to the Lorentz space  $L_{\mu}^{p,q}(X)$  are derived. The results are new even for linear fractional integrals  $T_{\gamma,\mu}$  (i.e., for m = 1). From the general results we obtain a criterion for the validity of the Sobolev inequality for  $T_{\gamma,\mu}^{(m)}$  in Lorentz spaces defined with respect to  $\mu$ . We investigate the same problem for Morrey-Lorentz spaces.

Sharp form for the Olsen's inequality in multilinear setting is obtained. Criteria for the boundedness of multilinear Riesz potential operator from Lebesgue space to a Lebesgue space with weight will be psesented.

Finally, weighted criteria for the boundedness of m- linear Riemann-Liouville operators will be also discussed.

Talk is based on the papers [1]–[5].

**References:** 

[1] L. Grafakos and A. Meskhi, On sharp Olsen's and trace inequalities for multilinear fractional integrals, Potential Analysis **59** (2023), 1039-1050.

[2] V. Kokilashvili, M. Mastylo and A. Meskhi, On the Boundedness of Multilinear Fractional Integral Operators, J. Geome. Anal. **30** (2020), 667-679.

[3] V. Kokilashvili and A. Meskhi, Fractional integrals on measure spaces, Fract. Calc. Appl. Anal. 4 (2001), No.1, 1–24.

[4] A. Meskhi and L. Natelashvili, Boundedness criteria for linear and multilinear fractional integral operators in Lorentz spaces, Trans. A. Razmadze Math. Inst. **178** (2024), No. 2, 331-333.

[5] A. Meskhi and L. Natelashvili, Boundedness criteria for linear and multilinear fractional integral operators in Lorentz spaces (to appear).

#### **Biography:**

**Prof. Alexander Meskhi** received his PhD degree in 1998 and Doctor of Science degree in 2001 from the A. Razmadze Mathematical Institute of the Georgian National Academy of Sciences, Georgia. He is currently a professor at Kutaisi International University and the head of the Department of Mathematical Analysis at the TSU A. Razmadze Mathematical Institute. Prof. A. Meskhi in the author of 6 monographs and many scientific papers. He is a member of the editorial boards of several international journals. For more information, you may check his detailed CV at <a href="https://rmi.tsu.ge/~meskhi/">https://rmi.tsu.ge/~meskhi/</a>.