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Abstract. We prove a conjecture of Zahariuta which itself solves a problem
of Kolmogorov on the ε-entropy of some classes of analytic functions. For
a given holomorphically convex compact subset K in a pseudoconvex do-
main D in Cn , Zahariuta’s conjecture consists in approximating the relative
extremal function u∗

K,D, uniformly on any compact subset of D \ K , by
pluricomplex Green functions on D with logarithmic poles in the compact
subset K .
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1. Introduction and statement of results

1.1. Zahariuta’s conjecture

In one complex variable, potentials play at least two roles. On the one hand
they provide an important source of examples of subharmonic functions.
On the other hand, despite their apparently rather special nature we know
that potentials turn out to be almost as general as arbitrary subharmonic
functions. Indeed, we have the Poisson-Jensen formula: if D is a bounded
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domain in C where we can solve the Dirichlet problem, and if u is a sub-
harmonic function on a neighbourhood of D̄, then

u(z) =
∫

∂D
u(w)dωD(z, w) − 1

2π

∫
D

g̃D(z, w)∆u(w), ∀z ∈ D.

Here ωD denotes the harmonic measure for D and g̃D(z, .) denotes the Green
function for D with pole at z [Ran95]. As a consequence, any subharmonic
function u on D which tends to 0 on the boundary, can be approximated by
subharmonic functions on D of the form

∑N
j=1 c j g̃D(z j, .), where c j < 0

and z j ∈ D (to prove this result we also use the symmetry property of the
Green function with respect to the variable and the pole). Let us illustrate
this with an example: let D be a bounded domain in C containing a compact
subset K such that we can solve the Dirichlet problem on D \ K . Denote by
uK,D the solution of the Dirichlet problem with φ = 0 on ∂D and φ = −1
on ∂K . If we set uK,D = −1 on K , uK,D is subharmonic on D, continuous
on D̄ and harmonic on D \ K . Then uK,D can be uniformly approximated
on any compact subset of D̄ \ K by subharmonic functions on D of the
type

∑N
j=1 c j g̃D(z j, .), where c j < 0 and z j ∈ K . Moreover, ∆u, which

is a positive measure supported on K , is approximated by a finite sum,
−2π

∑N
j=1 c jδz j , of Dirac measures. A precise version of this result was

proved by Skiba and Zahariuta1 in [SZ76].
This function

∑N
j=1 c j g̃D(z j, .) is in fact the unique solution of the

following Dirichlet problem:



u subharmonic and negative on D, continuous on D̄,

∆u = 0 on D \ {z1, . . . , zN},
u(z) = −c j log |z − z j | + Ø(1) as z → z j, ∀ j = 1, . . . , N,

u(z) → 0 as z → ∂D.

In this case, u verifies ∆u = −2π
∑N

j=1 c jδz j on D. If we denote by P the
finite set {(z j,−c j), 1 ≤ j ≤ N} where z j are distinct points in D and −c j

are positive weights, then we can set gD(P, .) = ∑N
j=1 c j g̃D(z j, .). We call

this the (negative) Green function on D with poles in P.
It is in this context that Zahariuta formulated in the 80’s what is usually

called Zahariuta’s conjecture:

Zahariuta’s conjecture. For a given holomorphically convex compact sub-
set K in a pseudoconvex domain D in Cn, the relative extremal function
u∗

K,D can be approximated, uniformly on any compact subset of D \ K, by
pluricomplex Green functions on D with logarithmic poles in the compact
subset K.

1 V.P. Zahariuta asked the author to write his name in this way.
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This was proved by Skiba and Zahariuta in the one dimensional case
[SZ76], but up to now, this conjecture was open in the multidimensional
case. The aim of this paper is to prove it in any dimension and in the most
general context possible.

If D is an open set in Cn and E is a subset of D, the relative extremal
function for E in D (see [Zah77], [Bed80a], [Kli81], [Kli82], [Sic81],
[Sad81], [BT82]) is defined as

uE,D(z) = sup{v(z) : v is psh on D, v |E≤ −1, v ≤ 0}, z ∈ D. (1.1)

We write psh for plurisubharmonic. The upper semicontinuous regulariza-
tion u∗

E,D is plurisubharmonic on D. In one variable, u∗
E,D is closely related

to the notion of harmonic measure. In several variables, a natural context
for the study of this function is the class of hyperconvex domains [Ste74].

A domain D in Cn is hyperconvex if there exists a continuous plurisub-
harmonic exhaustion function � : D →] −∞, 0[. If D is an open set and E
is a non pluripolar relatively compact subset of D, then D is hyperconvex
if and only if for any point w ∈ ∂D, lim

z→w
uE,D(z) = 0.

If D is a bounded hyperconvex open set and K ⊂ D is a compact set,
then we say that K is regular if u∗

K,D is a continuous function.

In one complex variable, uK,D is harmonic on D\K and ∆uK,D is a posi-
tive measure supported on K . In several variables, if D is a hyperconvex
domain in Cn containing a compact subset K , then u∗

K,D is maximal on
D \ K .

The notion of maximality in the realm of several complex variables bears
the same relation to the Monge-Ampère operator as the Laplacian does in
one variable. Following Sadullaev [Sad81], a plurisubharmonic function u
on D is maximal if for every relatively compact open subset ω of D and for
each upper semicontinuous function v on ω̄ such that v is plurisubharmonic
on ω and v ≤ u on ∂ω, we have v ≤ u on ω.

In one dimensional potential theory harmonic functions are smooth
and are characterized in terms of the Laplace operator. As there exist
discontinuous psh functions which are maximal in open sets in Cn

with n > 1, the situation is quite different; if a differentiable operator
is used to characterize maximal psh functions, it must be understood in
some generalized (e.g. distributional) sense. The complex Monge-Ampère
operator is a good candidate. It is defined as the nth exterior power of
ddc = 2i∂∂̄, i.e. (ddc)n = ddc ∧ . . . ∧ ddc (n times). d = ∂ + ∂̄ and

dc = i(∂̄ − ∂). If u ∈ C2(D), then (ddcu)n = 4nn!det
[

∂2u
∂z j∂zk

]
dV , where

dV = ( i
2)

ndz1 ∧ dz̄1 ∧ . . . ∧ dzn ∧ dz̄n is the usual volume form in Cn.
Bedford and Taylor have proved ([BT76], [BT82]) that this wedge pro-

duct (ddcu)n can be defined if u ∈ L∞
loc(D) ∩ PSH(D) and u is maximal

on D if and only if (ddcu)n = 0 on D.
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Consequently (ddcu∗
K,D)n = 0 on D \ K and (ddcu∗

K,D)n is a positive
measure supported on K .

The pluricomplex Green functions with logarithmic poles (see [Lem81]
for strictly convex domains, [Kli85], [Dem85] and [Dem87] for hyper-
convex domains, [Lel87] and [Lel89] for Banach spaces) generalize the
one-variable Green functions with logarithmic poles. If D is a domain in Cn

and P is a finite set {(pj , c j), pj ∈ D, c j > 0, 1 ≤ j ≤ N}, where pj are
distinct points in D and c j are positive weights, the pluricomplex Green
function on D with poles in P is defined by

gD(P, z) = sup{v(z) : v psh on D, v ≤ 0,∀ j = 1, . . . , N
v(z) ≤ c j log || z − pj || + Ø(1)}. (1.2)

If D is bounded gD(P, .) is a plurisubharmonic function on D with loga-

rithmic poles at pj of weight c j , for j = 1, . . . , N and
N∑

j=1

c j gD(pj , z) ≤
gD(P, z) ≤ min jc j gD(pj , z). Equality never holds everywhere in D, for
n ≥ 2 and N ≥ 2, because the Monge-Ampère operator is not linear. If D is
a bounded hyperconvex domain in Cn, we have an alternative description of
the pluricomplex Green functions in terms of the complex Monge-Ampère
operator, namely gD(P, z) is the unique solution to the following Dirichlet
problem:




u plurisubharmonic and negative on D, continuous on D̄,

(ddcu)n = 0 on D \ {p1, . . . , pN },
u(z) = c j log ||z − pj || + Ø(1) as z → pj , ∀ j = 1, . . . , N,

u(z) → 0 as z → ∂D.

In this case, (ddcu)n = (2π)n
∑N

j=1 cn
jδp j in D (δp j denotes the Dirac mea-

sure at pj ).

Now we understand that a natural framework for Zahariuta’s conjecture
for n > 1 is the case where D is bounded, hyperconvex and K is regular.
Indeed in this context, the functions uK,D and gD(P, .) are continuous on D̄,
equal to 0 on ∂D, and we can expect to obtain uniform approximations on
any compact subsets of D \ K .

To formulate the main results of this paper, we need more notation.
Let D be a bounded hyperconvex domain in Cn containing a regular compact
subset K . For any real number c ≤ 0, D(c) is the hyperconvex open subset
of D defined by

D(c) = {z ∈ D : uK,D(z) < c}. (1.3)
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For δ > 0 sufficiently small, D(−1 + δ) is a holomorphically convex regular
compact subset of D. We remark that D(−1 + δ) is an external exhaustion
of K̂D, the holomorphically convex hull of K in D, and that D(−δ) is an
internal exhaustion of D.

We will say that a bounded domain D in Cn is strictly hyperconvex if there
exist a bounded domain Ω and an exhaustion function � ∈ C(Ω, ]−∞, 1[)∩
PSH(Ω) such that D = { z ∈ Ω : �(z) < 0 } and for all real numbers
c ∈ [0, 1], the open set { z ∈ Ω : �(z) < c } is connected. We will say
also that a regular compact set K in a domain D in Cn is strictly regular
if K is the closure of a relatively compact open subset ω in D such that
uK,D ≡ u∗

ω,D.

Theorem A. Let D be a bounded hyperconvex domain in Cn containing
a regular compact set K in D. Then for any ε > 0 and δ > 0 sufficiently
small, there exists a pluricomplex Green function g on D with a finite number
of logarithmic poles such that

(i) the poles of g lie in the open neighborhood D(−1 + δ) of K̂D,
(ii) g satisfies the following uniform estimates on D \ D(−1 + δ)

(1 + ε)g(z) ≤ uK,D(z) ≤ (1 − ε)g(z).

Theorem B. Let D be a strictly hyperconvex domain in Cn containing
a strictly regular compact set K in D. Then for any ε > 0 sufficiently small,
there exists a pluricomplex Green function g on D with a finite number of
logarithmic poles such that

(i) the poles of g lie in (K̂D)◦, the interior of the compact subset K̂D in D,
(ii) g satisfies the following uniform estimates on D \ (K̂D)◦

(1 + ε)g(z) ≤ uK,D(z) ≤ (1 − ε)g(z).

The method used in [SZ76] to prove Zahariuta’s conjecture in the
one dimensional case cannot be generalized to the multidimensional case.
In particular, the authors use the linearity of the Laplace operator, the
Green formula in terms of the classical Green function, and the symme-
try property of the Green function with respect to the variable and the
pole. The problem in several variables is in particular that the complex
Monge-Ampère operator is no longer linear and is not continuous with
respect to the weak convergence of plurisubharmonic functions [Ceg83],
the Lelong-Jensen formula contains two terms which are difficult to con-
trol, and the pluricomplex Green function with one logarithmic pole is
no longer, in general, symmetric with respect to the variable and the
pole.
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1.2. Kolmogorov’s problem

In approximation theory, instead of considering methods of approximation
to specific functions by polynomials or rational functions, Kolmogorov has
considered the best methods of approximation to classes of functions. That
is, the classical methods (algebraic polynomials, rational functions, trigono-
metric polynomials) are compared with any other means of approximation
from a given family of approximating sets described by the same number
of parameters. This led Kolmogorov to introduce new concepts: diameter
and entropy.

In 1936, Kolmogorov introduced the quantity called the Kolmogorov
n-diameter. Let X be a normed linear space and let C ⊂ X be a compact
subset; the Kolmogorov n-diameter of C in X is the quantity

dn(C, X) = inf sup
x∈C

inf
y∈Ln

|| x − y ||,

where the lower bound is taken over all n-dimensional subspaces Ln of X.
In the 1950’s, new reasons arose for Kolmogorov to return to approxi-

mation theory again and to introduce a new concept of ε-entropy.
On the one hand there is his study of Vitushkin’s work on Hilbert’s 13th

problem about the complexity of function spaces. In 1955, Vitushkin proved
that there are “more” functions of n variables with smoothness r than there
are functions of m variables with smoothness l if n/r > m/l. Revealing the
“entropy” meaning of this result, Kolmogorov concentrated on the Hilbert
problem, and his efforts, complemented by Arnol’d’s, eventually led to
a refutation of Hilbert’s conjecture: continuous functions of three variables
did not turn out to be structured in a more complex way than functions of two
variables. However, in 1958 Kolmogorov proved that the space of analytic
functions of n variables is “larger” than the space of analytic functions of
m variables when n > m.

On the other hand, Kolmogorov was enthusiastic about Shannon’s in-
formation theory (1948). To distinguish a definite element in a finite set C
of N(C) elements, it suffices to specify [log2 N(C)] + 1 “binary digits.” In
the case of infinite sets, if (X, d) is a metric space and C ⊂ X is a compact
subset, Kolmogorov introduced the concept of approximate (to within ε)
specification of an element x ∈ C by saying that x belongs to a definite
set Ci in some covering C = ∪iCi by sets of diameter not greater than 2ε.
The smallest cardinality of such a covering is denoted by Nε(C, X). The
quantity log2 Nε(C, X) is called the ε-entropy of the set C and it is denoted
by

Hε(C, X) = log2 Nε(C, X).

For example, in any space X of finite dimension m, the ε-entropy of any
compact subset C of X verifies: Hε(C, X) log−1

2 (1/ε) tends to m when ε
tends to 0.

It is easy to see the analogy between ε-entropy and n-diameter. The
function N → εN(C, X), inverse to ε → Nε(C, X), can be regarded as
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the accuracy in reconstructing an element of C when the coding is by a set
consisting of N elements. The n-diameters dn are related to the study of the
approximation properties of n-dimensional subspaces, while the diameters
εn are concerned with the approximation properties of sets of n points.

The determination of the entropy and diameters of function classes has
several goals. Firstly, it leads to invariants, enabling us to distinguish and
classify function sets in infinite dimensional spaces. Secondly, computa-
tions of diameters and entropy make it possible to find new methods of
approximation. Thirdly, this is of interest for computational mathematics
by giving directions for the creation of the most expedient algorithms for
solving practical problems.

Precise references and details about this subject can be found in [Tik60],
[KT61], [Mit61], [Tik63], [Tik83], [Kol85], [Tik89], [Tik90].

In 1956, Kolmogorov [Kol56] found the order of the ε-entropy of func-
tions of n variables defined on a bounded domain in IRn which extend
analytically to some domain in Cn: (log(1/ε))n+1. The determination of the
precise asymptotic behaviour of this ε-entropy comes down to the following
problem: to prove the existence and to calculate explicitly the limit

lim
ε→0

Hε

(
AD

K

)
/ logn+1

2 (1/ε),

where D is a domain in Cn containing a compact set K , and AD
K is the set

of functions that are analytic in D and satisfy the inequality || f ||D ≤ 1,
endowed with the norm || f ||K = supz∈K | f(z) |.

In the one dimensional case, this problem is solved (see [Vit61], [Bab58],
[Ero58], [LT68], [Wid72] and see also [Far84], [Zah67], [Ngu72], [SZ76],
[Ski79]): Let D be a domain in C and K be a compact subset in D such
that we can solve the Dirichlet problem on D \ K . Let uK,D be the relative
extremal function for K in D. Let Γ be a system of smooth contours
separating K from ∂D, and let n be the normal to Γ directed from K to
∂D. The capacity associated to the compact K relative to the domain D is
defined by C(K, D) = ∫

Γ
∂nu(z) | dz |. If ∂D have positive logarithmic

capacity, and C \ D have a countable set of connected components, then

lim
ε→0

Hε

(
AD

K

)
/ log2

2(1/ε) = C(K, D)/(2π).

Up to now, in the multidimensional case, this problem proposed by Kol-
mogorov, was open. There are some interesting publications of Zahariuta
([Zah85] and [Zah94]) on this topic. Today, this problem, which we call
Kolmogorov’s problem, can be precisely written as follows.

Kolmogorov’s problem. lim
ε→0

Hε

(
AD

K

)
logn+1

2 (1/ε)
= C(K, D)/(2π)n ?
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The (relative) capacity of K (in D) ([Bed80b], [BT82]) is defined by
C(K, D) = sup{∫K (ddcu)n : u ∈ PSH(D, (0, 1))}. Note that, according
to the Chern-Levine-Nirenberg estimate, C(K, D) < ∞. When D is a hy-
perconvex domain in Cn and K is a compact subset of D

C(K, D) =
∫

D

(
ddcu∗

K,D

)n =
∫

K

(
ddcu∗

K,D

)n
,

where u∗
K,D is the upper semicontinuous regularization of uK,D, the rela-

tive extremal function defined in (1.1). We remark that for n = 1, ddc =
∆dx∧dy in R2, and according to Green’s formula C(K, D) = ∫

Γ
∂nu(z)dz =∫

K ∆udxdy, as it has been defined above.

Zahariuta’s conjecture is in direct connection with Kolmogorov’s pro-
blem. Skiba and Zahariuta have proved for n = 1 in [SZ76] and Zahariuta
has proved for n ≥ 2 in [Zah85] that to solve Kolmogorov’s problem, it is
sufficient to prove that Zahariuta’s conjecture is true.

Zahariuta used methods of the theory of Hilbert spaces, in particular
Hilbert scales, method of extendable bases and properties of extremal psh
functions with isolated singularities, to reduce Kolmogorov’s problem to
his conjecture.

1.3. Statement of results

The goal of this article is to prove Zahariuta’s conjecture in the multidi-
mensional case, in the most general context possible. This will imply that
Kolmogorov’s problem is also solved in this context.

Suppose for the moment that D is a strictly hyperconvex domain in
Cn (i.e. there exists a bounded domain Ω and an exhaustion function � ∈
C(Ω, ] − ∞, 1[) ∩ PSH(Ω) such that D = { z ∈ Ω : �(z) < 0 } and for
all real numbers c ∈ [0, 1], the open set { z ∈ Ω : �(z) < c } is connected)
containing a regular compact set K . The relative extremal function uK,D is
continuous on D. Denote by D j the bounded hyperconvex domain defined
by

D j = {z ∈ Ω : �(z) < 1/ j}, (1.4)

containing D for any integer j ≥ 1. A proof of Zahariuta’s conjecture in this
case is given in the following four steps. In the fifth and last step, we will
generalize Zahariuta’s conjecture to the case where D is only hyperconvex.

First step. Precise version of Lelong and Bremermann’s Theorem for
the relative extremal function uK,D (part 2). If D is a domain in Cn

containing a compact set K and p is a positive integer, we can define
a compact set E p of O(D) (the Fréchet space of holomorphic functions
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in D, with the topology of uniform convergence on every compact set of D)
by

E p = {
f ∈ O(D) : sup

z∈D
| f(z) |≤ 1, sup

z∈K
| f(z) |≤ e−p

}
(1.5)

and a continuous and plurisubharmonic function h p on D by

h p(z) = sup
f ∈E p

1

p
log | f(z) | , z ∈ D. (1.6)

Theorem 1. If D is a strictly hyperconvex domain in Cn containing a regu-
lar compact set K, then

lim
p→∞ h p(z) = sup

p≥1
h p(z) = uK,D(z), ∀z ∈ D.

Second step. Approach externally K̂D and internally D by special
holomorphic polyhedra defined by the same n holomorphic functions
(part 3). As a consequence of Theorem 1, we obtain:

Corollary 2. For any ε > 0, there exist three integers j ≥ 2, p ≥ 2 and
N = N(ε) ≥ 1 and there exist N holomorphic functions f1, . . . , fN ∈
E p, j = { f ∈ O(D j) :|| f ||D j ≤ 1, || f ||K≤ e−p} such that uK,D(z) −
ε/3 ≤ uK,D j (z) ≤ uK,D(z) on D, and

uK,D j (z) − 2ε/3 ≤ sup
1≤l≤N

1

p
log | fl(z) |≤ uK,D j (z) on D2 j .

Then we decide to abandon the uniform approximation of uK,D by a sup
of a finite (possibly large) number of plurisubharmonic functions of the type
1
p log | f | (where f is holomorphic in a neighborhood of D), in order to

obtain a “good” approximation of the sets K̂D and D: we approximate K̂D
externally and D internally by two special holomorphic polyhedra defined
by the same n holomorphic functions in a neighborhood of D. To do so we
use an idea of Bishop [Bis61].

If N(ε2/2) > n in Corollary 2, we modify the mapping f = ( f1, . . . , fN )
slightly so that the mapping ( f1/ fN, . . . , fN−1/ fN ) : D j \ { fN = 0} →
CN−1 is locally finite. Then we choose a constant r > 1 and an integer ν
sufficiently large such that the mapping g = (g1, . . . , gN−1) on D j , where
gj = (r f j)

ν − (r fN )ν defines two analytic polyhedra of type N − 1 which
respectively approximate K̂D externally and D internally. After N − n such
constructions, one obtains two special analytic polyhedra (i.e. of type n)
which verify the following theorem. If N(ε2/2) = n, there is nothing to do.
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Theorem 3. For any ε > 0 sufficiently small (such that D(−ε) is con-
nected), there exist two integers j ≥ 2 and p ≥ 2 and there exist n holo-
morphic functions f1, . . . , fn in O(D j) ∩ E p,2 j such that

K ⊂ K̂D ⊂ D(−1 + ε) ⊂ P̃(−1 + ε + β(ε)) ⊂ D(−1 + ε + ε2)

and D(−ε) ⊂ P̃(−ε + β(ε)) ⊂ D(−ε + ε2).

P̃(−1+ε+β(ε)) and P̃(−ε+β(ε)) are two special holomorphic polyhedra.
P̃(−1 + ε + β(ε)) is the finite union of the connected components of the
open set

{
z ∈ D : sup

1≤l≤n

1

p
log | fl(z) |< −1 + ε + β(ε)

}

that meet D(−1 + ε), and P̃(−ε + β(ε)) is the connected component con-
taining D(−ε), of the open set

{
z ∈ D : sup

1≤l≤n

1

p
log | fl(z) |< −ε + β(ε)

}
,

where 0 < β(ε) ≤ ε2/2.

Remark. If N = N(ε2/2) in Corollary 2, we can choose β(ε) = ε2/23(N−n)+1.

Third step. Pluricomplex Green functions with isolated logarithmic
singularities. Let F be the holomorphic mapping given in Theorem 3 and
defined by

F = ( f1, . . . , fn) : P̃(−ε + β(ε)) −→ Cn.

let r1 = exp[p(−1 + ε +β(ε))] and r0 = exp[p(−ε +β(ε))]. We denote by
P1 (resp. P0) the polydisc in Cn centered in O with multiradius r1.(1, . . . , 1)
(resp. r0.(1, . . . , 1)). We prove that this mapping F is proper and surjective
from the bounded special holomorphic polyhedron P̃(−1 + ε + β(ε)) (res-
pectively P̃(−ε+β(ε))) onto the polydisc P1 (respectively P0) (see part 3).
Then F has a finite number of zeros in P̃(−ε + β(ε)), and has no zero on
∂ P̃(−ε + β(ε)) nor on ∂ P̃(−1 + ε + β(ε)). Denote by Z = {p1, . . . , pk}
the finite set of zeros of F in the closure of P̃(−ε + β(ε)). We can sup-
pose in addition that these points are ordered such that the first k′ (always
≥ 1) zeros are exactly the zeros of F in P̃(−1 + ε + β(ε)). We denote
Z ′ = {pj : 1 ≤ j ≤ k′} (where k′ ≤ k) the finite set of zeros of F in
P̃(−1 + ε + β(ε)).

Define v to be the following Hartogs function on D j :

v(z) = sup
1≤l≤n

{
log(| fl(z)|/r0)

log(r0/r1)

}
= sup

1≤l≤n

1

1 − 2ε

{
1

p
log | fl(z)| + ε − β(ε)

}

(1.7)
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We remark that this function v belongs to a class of plurisubharmonic func-
tions with isolated logarithmic poles. It is the object of part 4 to study these
kinds of functions.

We can introduce the class of pluricomplex Green functions with isolated
logarithmic poles p of growth log || f || and of weight c (c > 0). Let D be
an open subset of Cn. Denote by P the finite set {(pj, f j , c j), 1 ≤ j ≤ k}
where pj are distinct poles in D, f j are germs of holomorphic mappings in
pj and c j are positive weights. We suppose that pj is an isolated zero of the
holomorphic mapping f j around pj , respectively for all j. We introduce the
following extremal function:

gD(P, z) = sup{u(z) : u ∈ PSH(D, [−∞, 0)), for j = 1, . . . , k
u(z) − c j log || f j(z)|| ≤ Ø(1) as z → pj}, (1.8)

where PSH(D, [−∞, 0)) is the set of all negative plurisubharmonic (psh)
functions on D. This function gD(P, .) is called the pluricomplex Green
function of D with poles in P. We denote mult( f j, pj ) the multiplicity of
f j at pj , for j = 1, . . . , k. Now consider the following Dirichlet problem:




u ∈ PSH(D) ∩ C(D, [−∞, 0]),
(ddcu)n = 0 on D \ {p1, . . . , pk},
u(z) − c j log || f j(z)|| = Ø(1) as z → pj , for 1 ≤ j ≤ k,
u(z) → 0 as z → ∂D.

(1.9)

Theorem 4. [LR99] If D is a bounded hyperconvex domain in Cn and
if P is a finite set {(pj , f j , c j), 1 ≤ j ≤ k}, of poles p j in D associated
respectively with the germs of the holomorphic mappings f j and the positive
weights c j , then the function u(z) = gD(P, z) is the unique solution to the
problem (1.9).

In addition, it satisfies (ddcu)n = (2π)n
k∑

j=1

cn
j mult( f j, pj )δp j .

Proposition 5. The function v, defined previously in (1.7), is the pluricom-
plex Green function gP̃(−ε+β(ε))(P, .) in P̃(−ε + β(ε)), where P is the finite
set {(pj , F, 1

log(r0/r1)
), 1 ≤ j ≤ k}, of poles p j ∈ Z associated respectively

with the germs of the holomorphic map F and the weights 1
log(r0/r1)

.

Fourth step. Zahariuta’s conjecture when D is strictly hyperconvex
(part 5). v is identically equal to −1 on ∂ P̃(−1+ε+β(ε)) and is identically
equal to 0 on ∂ P̃(−ε + β(ε)). But v has too many zeros in P̃(−ε + β(ε)).
So we replace v by v′, the pluricomplex Green function on P̃(−ε + β(ε))

with pole-set P′ = {(pj , F, 1
log(r0/r1)

), 1 ≤ j ≤ k′} in P̃(−1 + ε + β(ε)),
associated respectively with the germs of the holomorphic map F and the
weights 1

log(r0/r1)
.
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Then we approximate v′ uniformly outside of P̃(−1 + ε + β(ε)) (v′
depends on ε) by a classical pluricomplex Green function gε on D. This can
be done according to a result proved in part 4.

Then we use the Comparison Principle for the Monge-Ampère operator
to prove that the family {gε}ε satisfies

∫
P̃(−1+ε+β(ε))

(ddcgε)
n → C(K, D)

when ε tends to 0.
By applying a result of Poletsky and Nivoche [NP01] (see at the end

of this paper for a detailed proof) which gives a sufficient condition for
a sequence of pluricomplex Green functions to converge uniformly on any
compact subset of D\ K to the relative extremal function uK,D, we conclude
that gε is a uniform approximation of uK,D on any compact subset of D\ K̂D.

So Theorem A is proved when D is strictly hyperconvex and it is easy
to deduce Theorem B from this result.

Fifth and last step. Generalization to the hyperconvex case. If K is regu-
lar and D is bounded and hyperconvex, uK,D = u is a continuous exhaustion
function for D. For any δ > 0 sufficiently small, D(−δ) = {z ∈ D : u(z) <
−δ} is strictly hyperconvex and K is regular in D(−δ). By applying Theo-
rem A to the couple (K, D(−δ)) and according to the fact that uK,D(−δ)

converges uniformly to u on any compact set of D, we deduce Theorem
A for the couple (K, D).

In the case where K is not necessarily regular in D, for any δ > 0
sufficiently small, let K δ denote the compact set of D defined by K δ = {z ∈
D : dist(z, K̂D) ≤ δ}.
Proposition 6. Let D be a bounded hyperconvex domain in Cn containing
a compact set K. There exists a pluripolar set S in D such that uK,D is
continuous on D̄ \ S. For any β > 0, ε > 0 and δ > 0 sufficiently small,
there exists an open neighbourhood ω of S in D such that C(ω, D) < β and
there exists g a classical pluricomplex Green function on D with a finite
number of logarithmic poles such that

(i) the poles of g are in the open neighbourhood (K δ)◦ of K̂D,
(ii) g satisfies the following uniform estimates on D \ ((K δ)◦ ∪ ω)

(1 + ε)g(z) ≤ uK,D(z) ≤ (1 − ε)g(z).

2. Lelong and Bremermann’s theorem for the relative extremal
function

The proof of Theorem 1 is very similar to the proof of the corresponding
result for the pluricomplex Green function with one logarithmic pole (see
[Niv95]).

First, we give some preliminary properties of the functions h p defined
in (1.6).
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Lemma 2.1. Let D be a domain in Cn containing a compact set K. Then:

(i) ∀p ≥ 1, h p is a continuous psh function on D with values in ]−∞, 0[.
(ii) h p(z) ≤ −1 when z ∈ K.
(iii) (p + q)h p+q ≥ ph p + qhq on D, ∀(p, q) ∈ (N∗)2, and the sequence

(h p)p≥1 converges pointwise on D to supp≥1 h p.

Proof. For every f ∈ E p, 1
p log | f | is a negative and continuous function

on D, so h p is lower semicontinuous on D. By using Montel’s theorem, it
follows that h p is also upper semicontinuous on D. The plurisubharmonicity
of h p and property (ii) are a consequence of its definition.

If f ∈ E p and g ∈ E q, fg ∈ E p+q. Consequently, (p + q)h p+q ≥
sup{ log | fg |: f ∈ E p, g ∈ Eq } = ph p + qhq. Then we deduce the point-
wise convergence on D of the sequence (h p)p. ��
Remark 2.2. From Lemma 2.1, we deduce that hαp ≥ h p, on D,

∀(p, α) ∈ (N∗)2.

From the definition of uK,D, we deduce the following lemma.

Lemma 2.3. If D is a domain in Cn containing a compact set K, then for
every p ∈ N∗:

h p ≤ uK,D, on D. (2.10)

Let D be a bounded hyperconvex domain in Cn containing a regular
compact set K so that uK,D is continuous on D. Demailly has introduced in
[Dem92], for any p ∈ N∗, the following space

H p =
{

f ∈ O(D) :
∫

D
| f(z) |2 e−2puK,D(z)dV(z) < ∞

}
,

and the function u p defined on D by

u p(z) = 1

2p
log

(∑
l

| σl(z) |2
)

.

H p is an Hilbert space provided with the scalar product ( f, g)p =∫
D f ge−2puK,D dV (the norm is denoted by || . ||p). We denote by dV the

ordinary Lebesgue measure, and (σl) an orthonormal basis of H p.

Lemma 2.4. [Dem92] For all p ∈ N∗, we have u p(z) = sup
f ∈Bp

1
p log | f(z)|

on D, where Bp is the unit ball in H p. Moreover, u p is a continuous psh
function on D.

Demailly applied the Ohsawa-Takegoshi L2-extension theorem ([Ohs88],
Corollary 2) to prove the following theorem.
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Theorem 2.5. [Dem92] There exist a constant c1 > 0, depending only
on n and the diameter of D and a constant c2 > 0, such that:

u p(z) ≥ uK,D(z) − c1

p

and

u p(z) ≤ sup
w∈B(z,r)

uK,D(w) + 1

p
(log c2 − n log r)

for all z in D and all real numbers r > 0 such that r < dist(z, bD). In
particular, the sequence (u p)p≥1 converges pointwise to uK,D on D.

Now we suppose that D is a strictly hyperconvex domain in Cn contai-
ning a regular compact set K and D j is the bounded hyperconvex domain
defined by (1.4), for any integer j ≥ 1.

Lemma 2.6. Let D be a strictly hyperconvex domain in Cn containing
a regular compact subset K. Then K is regular for D j for any j ≥ 1 and
the sequence (uK,D j) j≥1 converges uniformly on D to uK,D.

Proof. Since D ⊂ D j , then uK,D ≥ uK,D j ≥ −1 and u∗
K,D ≥ u∗

K,D j
≥ −1

on D. It is well known that K is regular for D if and only if u∗
K,D ≡ −1

on K (see [Kli91], p. 159). Thus u∗
K,D j

≡ −1 on K , and K is also regular
for D j for any j ≥ 1.

There exists c > 0 sufficiently large such that c� ≤ −1 on K and
c(� − 1/ j) ≤ uK,D j on D j . Then, c j = inf

z∈bD
uK,D j (z) ∈ [−1/ j, 0) and

lim j c j = 0. For every j ≥ 1, consider u j the function defined on D j by

u j(z) =
{

uK,D j (z) if z ∈ D j \ D,

max{ uK,D j (z), uK,D(z) + c j } if z ∈ D.

u j is a negative continuous psh function on D j and u j ≤ −1 on K . Conse-
quently u j ≤ uK,D j on D j and in particular, uK,D + c j ≤ uK,D j on D. Thus
we get the following statement : uK,D j ≤ uK,D ≤ uK,D j − c j on D, and the
lemma is proved. ��
Lemma 2.7. We have the following inequality: ∀ j ≥ 1 and ∀p ≥ 1

sup
{

1

p
log | f |: f ∈ Bp, j

}
= u p, j ≤ 1

p
log(c2δ( j)−n) + (1 − α j)h p on D,

(2.11)

where Bp, j ={ f ∈O(D j) : ∫D j
| f |2 e−2puK,D j dV ≤ 1}, δ( j)= dist(D, bD j)

and α j is a positive constant depending only on K, D and D j which tends
to 0 when j tends to ∞.
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Proof. Let f ∈ Bp, j . There exists z ∈ bD such that | f(z) |= sup{| f(w) |:
w ∈ D}. By the Mean Value Inequality applied to the psh function | f |2 on
the ball B(z, δ( j)) ⊂ D j , we get:

| f(z) |2≤ c2
2

δ( j)2n

∫
B(z,δ( j))

| f(w) |2 dV(w).

As uK,D j is negative on D j , we deduce that

| f(z) |2≤ c2
2

δ( j)2n

∫
B(z,δ( j))

| f(w) |2 e−2puK,D j (w)dV(w) ≤ c2
2

δ( j)2n
|| f ||2p, j,

where || f ||2p, j=
∫

D j
| f |2 e−2puK,D j dV . Also by the Mean Value Inequali-

ty applied to | f |2, we obtain for any z ∈ K :

| f(z) |2 ≤ c2
2

δ( j)2n
e−2p(1−α j )

∫
B(z,δ( j))

| f(w) |2 e−2puK,D j (w)dV(w)

≤ c2
2

δ( j)2n
e−2p(1−α j ) || f ||2p, j,

where −1 + α j = supz∈K j
uK,D j (z) and K j = {z ∈ D : dist(z, K ) ≤ δ( j)}.

According to Lemma 2.6, α j is positive and tends to 0 when j tends to ∞.
From Lemma 2.4 and the above inequalities, we obtain the required

inequality (2.11). ��
Finally, letting p, then j go to infinity in inequalities (2.10) and (2.11)

and by Lemma 2.6 and Theorem 2.5, we derive that the sequence (h p)p≥1
converges pointwise to uK,D on D. This completes the proof of Theorem 1.

��

3. Special holomorphic polyhedra and proper mappings

3.1. Holomorphic polyhedra

Let D be a strictly hyperconvex domain in Cn containing a regular compact
set K . We obtain Corollary 2 directly from Theorem 1.

Proof of Corollary 2. First, according to Lemma 2.6, for any ε > 0, there
exists an integer j ≥ 1 such that for all j ′ ≥ j, we have

uK,D(z) − ε/3 ≤ uK,D j ′ (z) ≤ uK,D(z) on D.

In addition, according to Theorem 1, we know that for any j ≥ 2, uK,D j (z) =
supp≥1 h p, j(z)= limp h p, j(z) pointwise in D j , where h p, j =sup{ 1

p log | f |:
f ∈ E p, j}. And according to Remark 2.2, we have in particular for any p ≥ 2
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that the increasing sequence (h pα, j)α converges pointwise to uK,D j on D j .
Consequently, by Dini’s theorem, this sequence of continuous functions
on D j converges uniformly on any compact set of D j to the continuous
function uK,D j . If we fix any real number ε > 0, any integer p ≥ 2, and if
we take the corresponding integer j(ε) ≥ 1 such that the first property is
satisfied, then there exists an integer α0 ≥ 1 such that for any α ≥ α0, we
obtain on the compact set D2 j of D j :

uK,D j (z) − ε/3 ≤ h pα, j(z) ≤ uK,D j(z).

Now for this integer α0, there exist another integer N ≥ 1 and N holomor-
phic functions f1, . . . , fN ∈ E pα0 , j such that

h pα0 , j(z) − ε/3 ≤ sup
1≤l≤N

1

pα0
log | fl(z) |≤ h pα0 , j(z) on D2 j .

The proof is complete. ��
In what follows, to simplify the notation, we denote by u and u j the

relative extremal functions uK,D and uK,D j respectively.

Lemma 3.1. Let D be a bounded hyperconvex domain in Cn and let K be
a compact set in D. Then for any −1 < r < 0 sufficiently near 0, the open
set D(r) (see (1.3)) is again connected.

Proof. Choose any compact connected subset L of D with K ⊂ L . Denote
r0 = supz∈L u(z), r0 ∈ [−1, 0[. Let r0 < r ≤ 0. Suppose that D(r) is
not connected. Denote D(r, 1) the connected component of D(r) which
contains L . D(r) has at least one other connected component, denoted by
D(r, 2). Let ũ be the following negative psh function on D, defined by
max{u, r} on D(r, 2) and by u on D \ D(r, 2). On K ⊂ L ⊂ D(r, 1) ⊂
D \ D(r, 2), ũ = u ≡ −1. So by the definition of u, ũ ≤ u on D. This is
a contradiction, since on D(r, 2), ũ = r > u, and consequently the lemma
is proved. ��

If we fix ε, j, p, N and the N holomorphic functions f1, . . . , fN as in
Corollary 2, we denote by vN the continuous psh function on D j defined by

vN (z) = sup
1≤l≤N

1

p
log | fl(z) | .

For any r ∈ IR, we denote

PN (r) = {z ∈ D : vN (z) < r}.
We have the following inclusions D(−δ − ε) ⊂ PN(−δ − ε) ⊂ D(−δ) for
any δ > 0, and in particular for ε2/2, δ = 1 − ε − ε2 and δ = ε − ε2, we
obtain

D(−1 + ε + ε2/2) ⊂ PN (−1 + ε + ε2/2) ⊂ D(−1 + ε + ε2)

and D(−ε + ε2/2) ⊂ PN (−ε + ε2/2) ⊂ D(−ε + ε2).
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3.2. Special holomorphic polyhedra

We use the same hypothesis as in the previous section. To prove the different
results of Sect. 3.2, we are inspired by the proof of Bishop’s Lemma about
special holomorphic polyhedra. We refer to [Bis61], the original paper about
this subject (see also [Nar60]). We recall that a holomorphic polyhedron of
type N in an open set D in Cn is a finite union P of relatively compact
connected components of a subset P̃ ⊆ D of the form P̃ = {z ∈ D :
| f j(z)| < 1 for j = 1, . . . , N}, where f j ∈ O(D).

A holomorphic polyhedron of type n in a holomorphically convex open
set D in Cn is called a special holomorphic polyhedron.

The existence of special holomorphic polyhedra is a rather nontrivial
matter, and the principal existence result is the following ([Bis61], [Nar60]):

Bishop’s lemma. Suppose that D is a holomorphically convex open set
in Cn. Then whenever K is a holomorphically convex compact subset of D
and U is an open neighbourhood of K in D, there is a special holomorphic
polyhedron P such that K ⊂ P ⊆ U.

Then Theorem 3 allows us to approximate K̂D externally and D inter-
nally simultaneously by two special holomorphic polyhedra defined by the
same n holomorphic functions.

If N(ε2/2) = n in Corollary 2, we can easily deduce Theorem 3. Indeed,
according to the notation at the end of Sect. 3.1, we have

K̂D ⊂ D(−1 + ε) ⊂ D(−1+ε+ε2/2) ⊂ P̃(−1+ε+ε2/2) ⊂ D(−1+ε+ε2),

where P̃(−1 + ε + ε2/2) is the finite union of the connected components
of the open set Pn(−1 + ε + ε2/2) that meet D(−1 + ε). We also have

D(−ε) ⊂ D(−ε + ε2/2) ⊂ P̃(−ε + ε2/2) ⊂ D(−ε + ε2),

where P̃(−ε + ε2/2) is the connected component of the open set Pn(−ε +
ε2/2) that contains D(−ε).

Now, if N = N(ε2/2) > n in Corollary 2, the proof of Theorem 3
proceeds by induction by applying the processes (P q) and (Rq) defined
below successively, for q = N, N − 1, . . . , n + 1 respectively, until we
obtain two holomorphic polyhedra of type n which are good exhaustions
for K̂D and D.

Until the end of Sect. 3.2, we suppose that the integer N = N(ε2/2)
given in Corollary 2 is greater than n, and we denote pN = p.

3.2.1. Process (Pq), for n + 1 ≤ q ≤ N

Proposition 3.2. Let Ω be a domain in Cn containing a compact subset L.
Let f1, . . . , fq (q > n) be q holomorphic functions in Ω. We suppose that fq
is not identically zero on Ω so that X = {z ∈ Ω : fq(z) = 0} is a proper
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holomorphic subvariety in Ω. Then for any ε > 0, there exist q holomorphic
functions f̃1, . . . , f̃q ∈ O(Ω) such that

(i) sup
1≤l≤q

| fl(z) | e−ε ≤ sup
1≤l≤q

| f̃l(z) |≤ sup
1≤l≤q

| fl(z) |, ∀z ∈ L,

(ii) the holomorphic mapping

(
f̃1

f̃q
, . . . ,

f̃q−1

f̃q

)
: Ω \ X −→ Cq−1 is

locally finite; that is, its level sets consist of just isolated points of
Ω \ X.

Proof. Let ε > 0 be fixed. We are going to use the following result, verified
when q > n ([Bis61], Theorem 1 and Lemma 4): The set of elements g =
(g1, . . . , gq−1) of O(Ω)q−1 for which the mapping (g1 + f1/ fq, . . . , gq−1 +
fq−1/ fq) is locally finite on Ω \ X, is a dense subset of O(Ω)q−1.

Then for any ε′ > 0, there are functions g1, . . . , gq−1 ∈ O(Ω) such that
|| gl ||L≤ ε′ and for which the mapping

(
f1

fq
+ g1, . . . ,

fq−1

fq
+ gq−1

)
: Ω \ X −→ Cq−1 (∗)

is locally finite. It is at this point that the hypothesis q > n is invoked.
If we apply this for ε′ > 0 such that e−ε/2 ≤ 1 − ε′ < 1 < 1 + ε′ ≤ eε/2

and if we denote

f̃l = ( fl + gl fq)e
−ε/2 for l = 1, . . . , q − 1 and f̃q = fq,

then we obtain that

sup
1≤l≤q

| f̃l(z) |≤ sup
1≤l≤q

| fl(z) |, ∀z ∈ L.

Conversely, for any z ∈ L , there exists l0 ∈ {1, . . . , q} such that
sup

1≤l≤q
| fl(z) |=| fl0(z) |. If l0 = q, then

sup
1≤l≤q

| f̃l(z) |≥| f̃q(z) |= sup
1≤l≤q

| fl(z) | .

If 1 ≤ l0 ≤ q − 1, then | f̃l0(z) |≥ (| fl0(z) | − | gl0(z) fq(z)|)e−ε/2, where
| gl0(z) |≤ ε′ and | fq(z) |≤| fl0(z) |. So

| f̃l0(z) |≥| fl0(z) | (1 − ε′)e−ε/2 ≥| fl0(z) | e−ε.

Consequently, we obtain that

sup
1≤l≤q

| f̃l(z) |≥ sup
1≤l≤q

| fl(z) | e−ε on L,

and (i) is proved. Property (ii) is a direct consequence of (∗). The proof is
thereby complete. ��
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Process (Pq). Suppose that we have q holomorphic functions fl ∈ E pq,2 j ∩
O(D j) such that the function fq is not identically zero on the domain D j ,
so that X j,q = {z ∈ D j : fq(z) = 0} is a proper holomorphic subvariety in
D j . We denote by vq the continuous psh function given by

vq = sup
1≤l≤q

1

pq
log | fl |,

and for any r ∈ IR,

Pq(r) = {z ∈ D : vq(z) < r}.
Suppose also that the following inclusions are satisfied:

D(−1 + ε) ⊂ Pq(−1 + ε + ε2/21+3(N−q), 1) ⊂ D(−1 + ε + ε2), (3.12)

D(−ε) ⊂ Pq(−ε + ε2/21+3(N−q), 1) ⊂ D(−ε + ε2), (3.13)

where Pq(−1 + ε + ε2/21+3(N−q), 1) is the finite union of the connected
components of the open set Pq(−1+ε+ε2/21+3(N−q)) that meet D(−1 + ε),
and Pq(−ε + ε2/21+3(N−q), 1) is the connected component of the open set
Pq(−ε + ε2/21+3(N−q)) that contains D(−ε).

Then we apply Proposition 3.2 to these q holomorphic functions fl for
pqε

2/22+3(N−q), Ω = D j and L = D2 j . We obtain q holomorphic functions
f̃1, . . . , f̃q on D j such that

(i) vq(z) − ε2/22+3(N−q) ≤ sup
1≤l≤q

1
pq

log | f̃l(z) |≤ vq(z) ≤ u2 j(z) on D2 j,

(ii) in particular, fl ∈ E pq,2 j for any 1 ≤ l ≤ q,
(iii) the following holomorphic mapping is locally finite:

(
f̃1

f̃q
, . . . ,

f̃q−1

f̃q

)
: D j \ X j,q −→ Cq−1. (3.14)

We denote by ṽq the continuous psh function given by ṽq = sup
1≤l≤q

1
pq

log | f̃l |,
and for any r ∈ IR,

P̃q(r) = {z ∈ D : ṽq(z) < r}.
Then we obtain the following inclusions for any δ > 0,

D

(
−δ− ε2

22+3(N−q)

)
⊂ Pq

(
−δ− ε2

22+3(N−q)

)
⊂ P̃q

(
−δ− ε2

22+3(N−q)

)
⊂ Pq(−δ).

In particular, for δ = 1 − ε − ε2/21+3(N−q) and δ = ε − ε2/21+3(N−q), we
have respectively
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K ⊂ K̂D ⊂ D(−1 + ε) ⊂ P̃q(−1+ε+ε2/22+3(N−q), 1) ⊂ D(−1+ε+ε2),

D(−ε) ⊂ P̃q(−ε + ε2/22+3(N−q), 1) ⊂ D(−ε + ε2),

where P̃q(−1 + ε + ε2/22+3(N−q), 1) is the finite union of the connected
components of the open set P̃q(−1+ε+ε2/22+3(N−q)) that meet D(−1 + ε),
and P̃q(−ε + ε2/22+3(N−q), 1) is the connected component of the open set
P̃q(−ε + ε2/22+3(N−q)) that contains D(−ε).

3.2.2. Process (Rq) for n + 1 ≤ q ≤ N. We use the same notations as at
the end of Sect. 3.2.1. Let us denote, for any 1 ≤ l ≤ q − 1 and for any
ν ∈ IN∗, the holomorphic function on D j

Fl,ν = f̃ ν
l − f̃ ν

q .

For any r ∈ IR, we denote by Pν
q−1(r) the open set in D defined by

Pν
q−1(r) = {

z ∈ D : wν
q−1(z) < r

}
,

where wν
q−1 = sup

1≤l≤q−1

1
pqν

log | Fl,ν | is a continuous psh function on D j .

Proposition 3.3. For any ε > 0 sufficiently small (such that D(−ε) is
connected), if α1(ε) = ε2/22+3(N−q) and α2(ε) = ε2/23(N−q+1), there exists
an integer νq ≥ 1 such that for any ν ≥ νq, we have

D(−1 + ε) ⊂ Pν
q−1(−1 + ε + α2(ε), 1) ⊂ P̃q(−1 + ε + α1(ε), 1), (3.15)

where Pν
q−1(−1 + ε + α2(ε), 1) is the finite union of the connected compo-

nents of Pν
q−1(−1 + ε + α2(ε)) that meet D(−1 + ε), and

D(−ε) ⊂ Pν
q−1(−ε + α2(ε), 1) ⊂ P̃q(−ε + α1(ε), 1), (3.16)

where Pν
q−1(−ε+α2(ε), 1) is the connected component of Pν

q−1(−ε+α2(ε))

that contains D(−ε).

Proof. For any l ∈ {1, . . . , q − 1} and for any ν ≥ 1, Fl,ν is a holomor-
phic function on D j which satisfies | Fl,ν(z) |≤ 2 sup

1≤l≤q
| f̃l(z) |ν on D j .

Consequently, || Fl,ν ||K≤ 2e−pqν, || Fl,ν ||D2 j
≤ 2, and

sup
1≤l≤q−1

1

pqν
log | Fl,ν(z) | ≤ sup

1≤l≤q

1

pq
log | f̃l(z) | + log 2

pqν
on D j,

≤ u(z) + log 2

pqν
on D.
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We have

K̂D ⊂ D(−1 + ε) ⊂ P̃q(−1 + ε + α1(ε), 1) ⊂ D(−1 + ε + ε2).

If we choose a positive constant c2 such that 0 < α2(ε) < c2 < α1(ε) and
an integer ν0

q such that log 2/(pqν) < α2(ε) for ν ≥ ν0
q, then we obtain that

D(−1 + ε) ⊂ Pν
q−1(−1 + ε + α2(ε), 1).

To complete the proof of relation (3.15), it is enough to show that whenever ν
is sufficiently large,

Pν
q−1(−1 + ε + α2(ε), 1) ⊂ P̃q(−1 + ε + α1(ε)).

If it was not the case, then there would be a sequence (νk)k of integers such
that νk → ∞ and

Pνk
q−1(−1 + ε + α2(ε), 1) �⊂ P̃q(−1 + ε + α1(ε)).

In what follows, we will consider integers k sufficiently large (and the
corresponding νk) such that

K̂D ⊂ D(−1 + ε) ⊂ Pνk
q−1(−1 + ε + α2(ε), 1).

For each connected component Pνk,0
q−1 (−1 + ε +α2(ε), 1) of Pνk

q−1(−1 + ε +
α2(ε), 1), necessarily Pνk,0

q−1(−1+ ε+α2(ε), 1)∩ D(−1 + ε) �= ∅, and there

must be some connected component Pνk,0
q−1 (−1 + ε + α2(ε), 1) for which

Pνk,0
q−1 (−1 + ε + α2(ε), 1) ∩ ∂ P̃q(−1 + ε + α1(ε)) �= ∅.

Now introduce the auxiliary open level set P̃q(−1 + ε + c2) for which

P̃q(−1 + ε + α1(ε)) \ P̃q(−1 + ε + c2) is compact in D. We note that there
must be some connected component

Rk ⊂ Pνk,0
q−1(−1 + ε + α2(ε), 1) ∩ [P̃q(−1 + ε + α1(ε)) \ P̃q(−1 + ε + c2)]

for which

Rk ∩ ∂ P̃q(−1 + ε + α1(ε)) �= ∅ and Rk ∩ ∂ P̃q(−1 + ε + c2) �= ∅.

Indeed, choose a path in Pνk,0
q−1(−1+ε+α2(ε), 1) from a point in Pνk,0

q−1 (−1+
ε+α2(ε), 1)∩ D(−1 + ε) to a point in Pνk,0

q−1(−1+ε+α2(ε), 1)∩∂ P̃q(−1+
ε + α1(ε)) �= ∅. Then observe that the segment of that path from the last

point in P̃q(−1 + ε + c2) to the first point in ∂ P̃q(−1+ε+α1(ε)) belongs to
such a connected component Rk. If z ∈ Rk , then z ∈ Pνk

q−1(−1 + ε +α2(ε)),

| f̃l(z)
νk − f̃q(z)

νk |< epqνk(−1+ε+α2(ε)), for l = 1, . . . , q − 1,
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and since z /∈ P̃q(−1 + ε + c2) necessarily

| f̃l0(z) |≥ epq(−1+ε+c2) for some index 1 ≤ l0 ≤ q.

Combining these last two inequalities, we obtain a third relation

| f̃q(z) |νk ≥| f̃l0(z) |νk − | f̃q(z)
νk − f̃l0(z)

νk |
> epqνk(−1+ε+c2) − epqνk(−1+ε+α2(ε)) > 0 (3.17)

from which it follows that Rk ⊂ D j \ X j,q, and hence the mapping
(

f̃1

f̃q
, . . . ,

f̃q−1

f̃q

)
: D j \ X j,q −→ Cq−1

is well defined on Rk . Then, combining the above inequalities yields the
following inequality:∣∣∣∣∣

f̃l(z)νk

f̃q(z)νk
− 1

∣∣∣∣∣ =
∣∣∣∣∣

f̃l(z)νk − f̃q(z)νk

f̃q(z)νk

∣∣∣∣∣
<

epqνk(−1+ε+α2(ε))

epqνk(−1+ε+c2) − epqνk(−1+ε+α2(ε))
= 1

epqνk(c2−α2(ε)) − 1
,

and since epq(c2−α2(ε)) > 1, it follows from this that∣∣∣∣∣
f̃l(z)νk

f̃q(z)νk
− 1

∣∣∣∣∣ <
π

νk
for νk sufficiently large.

Geometrically, this last inequality means that the point f̃l(z)/ f̃q(z) lies
within one of νk disjoint open neighborhoods of the νk roots of unity, where
these neighborhoods have the property that their radii tend to zero as νk
increases to infinity.

Now, since Rk is connected, the points f̃l(z)/ f̃q(z) must indeed lie
in the same neighborhood for all z ∈ Rk. The mapping z ∈ Rk −→(

f̃1(z)

f̃q(z)
, . . . ,

f̃q−1(z)

f̃q(z)

)
thus takes Rk into a product of q − 1 such neigh-

borhoods. After passing to a suitable subsequence of the indices νk if ne-
cessary, it can be assumed that these neighborhoods shrink to a single point
(ξ1, . . . , ξq−1), where of course | ξl |= 1. Thus for any points zk ∈ Rk ,

lim
k→∞

f̃l(zk)

f̃q(zk)
= ξl, 1 ≤ l ≤ q − 1.

Now for any value t in the interval [c2, α1(ε)], there must be some point

zk
t ∈ Rk ⊂ P̃q(−1 + ε + α1(ε))\ P̃q(−1+ ε+ c2) for which supl | f̃l(zk

t )| =
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epq(−1+ε+t), and since P̃q(−1 + ε + α1(ε)) \ P̃q(−1 + ε + c2)

⊂ P̃q(−1 + ε + α1(ε)), which is a compact set in D, a subsequence of these

points will converge to a limit point zt ∈ P̃q(−1 + ε + α1(ε)) \ P̃q(−1 +
ε+ c2). Since supl | f̃l(zt)| = ep(−1+ε+t), these points are distinct for distinct
values of t, so there are indeed uncountably many such points.

The values f̃q(zk
t ) are uniformly bounded away from zero as a conse-

quence of (3.17). Indeed,
∣∣ f̃q

(
zk

t

)∣∣ ≥ epq(−1+ε+c2)(1 − epqνk(α2(ε)−c2))1/νk

= epq(−1+ε+c2) exp
(

1

νk
log(1 − epqνk(α2(ε)−c2))

)
,

where the last factor exp( 1
νk

log(1 − epqνk(α2(ε)−c2))) tends to 1 when k tends

to ∞. Thus | f̃q(zt)| �= 0, and consequently zt /∈ X j,q. It then follows that all
the points zt have the same image under the mapping (3.14), contradicting
the condition that the mapping is locally finite and hence can have at most
countably many inverse images. That contradiction means that it must be the
case that for α2(ε) chosen as before, Pν

q−1(−1+ε+α2(ε), 1) ⊂ P̃q(−1+ε+
α1(ε)) whenever ν is sufficiently large (i.e. for ν ≥ ν1

q ≥ ν0
q) . In addition,

each connected component of Pν
q−1(−1 + ε + α2(ε), 1) is contained in

a connected component of P̃q(−1 + ε + α1(ε)), which then itself meets
D(−1 + ε). Consequently, the inclusions (3.15) are proved. In the same
way as for (3.15), we can prove that there exists an integer ν2

q ≥ ν0
q such

that (3.16) holds for any ν ≥ ν2
q . The proof of Proposition 3.3 is complete.

��
Process (Rq) first consists in applying Proposition 3.3 to the q − 1

holomorphic functions Fl,ν, defined at the beginning of Sect. 3.2.2. Then
we choose ν sufficiently large such that log 2/(pqν) ≤ ε2/23(N−q+1)+1, and
we denote by pq−1 = pqν. We define q − 1 new holomorphic functions fl
by Fl,ν/2 ∈ E pq−1,2 j ∩ O(D j). We also denote by Pq−1(r) the open sublevel
set

Pq−1(r) = {z ∈ D : vq−1(z) < r},
where vq−1 is the psh function defined by

vq−1 = sup
1≤l≤q−1

1

pq−1
log | fl | .

Remark that vq−1 ≤ u on D and that Pq−1(r) = Pν
q−1(r + log 2/pq−1) for

any r < 0. Since the inclusions (3.15) and (3.16) are satisfied and ν is
sufficiently large such that log 2/(pqν) ≤ ε2/23(N−q+1)+1, we deduce that

D(−1 + ε) ⊂ Pq−1(−1 + ε + ε2/23(N−q+1)+1, 1) ⊂ D(−1 + ε + ε2)
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and
D(−ε) ⊂ Pq−1(−ε + ε2/23(N−q+1)+1, 1) ⊂ D(−ε + ε2),

where Pq−1(−1+ε+ε2/23(N−q+1)+1, 1) is the finite union of the connected
components of Pq−1(−1 + ε + ε2/23(N−q+1)+1) that meet D(−1 + ε), and
Pq−1(−ε + ε2/23(N−q+1)+1, 1) is the connected component of Pq−1(−ε +
ε2/23(N−q+1)+1) that contains D(−ε).

3.2.3. Proof of Theorem 3: iteration of the processes (P q) and (Rq) suc-
cessively for q = N, N − 1, . . . , n + 1 respectively. We use the same
notations as at the end of Sect. 3.1 and as in Sects. 3.2.1 and 3.2.2 for
q = N = N(ε2/2) (in Corollary 2). According to Corollary 2, there exist N
(> n) holomorphic functions f1, . . . , fN ∈ E pN , j ⊂ E pN ,2 j ∩ O(D j) such
that (3.12) and (3.13) are verified for q = N.

We can assume of course that the function fN is not identically zero
on the domain D j so that X j,N = {z ∈ D j : fN(z) = 0} is a proper
holomorphic subvariety in D j .

Therefore, we are able to apply processes (P N ) and (RN ) in turn to
obtain the existence of N − 1 new holomorphic functions fl ∈ E pN−1,2 j ∩
O(D j) (pN−1 ≥ pN ) such that (3.12) and (3.13) are verified for q = N −1.

So we have the necessary hypothesis to apply the processes (P N−1) and
(RN−1) again. It is clear now that, by iterating processes (P q) and (Rq),
for q = N − 1, for q = N − 2, . . . and finally for q = n + 1, we obtain the
existence of n new holomorphic functions fl ∈ E pn,2 j ∩ O(D j) (pn ≥ pN )
which satisfy the conclusion of Theorem 3. ��

3.3. Proper mappings

In this section, D is once again a strictly hyperconvex domain in Cn con-
taining a regular compact set K . We use the same notations as in Theorem 3.
Let r1 = exp[p(−1 + ε + β(ε))] and r0 = exp[p(−ε + β(ε))]. We call P1
(resp. P0) the polydisc in Cn centered in O with multiradius r1.(1, . . . , 1)
(resp. r0.(1, . . . , 1)). Let F be the following holomorphic mapping defined
by

F = ( f1, . . . , fn) : P̃(−ε + β(ε)) −→ Cn.

Proposition 3.4. The mapping F is proper and surjective from the bounded
special holomorphic polyhedron P̃(−ε + β(ε)) (respectively P̃(−1 + ε +
β(ε))) to the polydisc P0 (respectively P1).

Proof. To prove that F is proper from P̃(−ε + β(ε)) to P0 (respectively
from P̃(−1 + ε + β(ε)) to P1), we just verify that if (zk)k is a sequence
in P̃(−ε + β(ε)) (resp. P̃(−1 + ε + β(ε))) which converges to a boundary
point z0 ∈ ∂ P̃(−ε + β(ε)) (resp. ∂ P̃(−1 + ε + β(ε))), then the sequence
(F(zk))k converges to the boundary point F(z0) ∈ ∂P0 (resp. ∂P1).
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According to Remmert’s proper mapping theorem ([Loj91], p. 290 and
300), since F : P̃(−ε+β(ε)) → P0 (respectively P̃(−1+ε+β(ε)) → P1)
is proper and dimP̃(−ε + β(ε)) = dim P̃(−1 + ε + β(ε)) = dimP0 =
dimP1 = n, F is surjective. ��

4. Extremal functions with logarithmic singularities

The function v defined by (1.7) belongs to the class of pluricomplex Green
functions with isolated logarithmic poles p of growth log || f || and weight c
(c > 0), where f is a holomorphic mapping from an open set of Cn to Cn . In
this part, we study some properties of this class. Some results are particular
cases of results proved by Lelong and Rashkovskii in [LR99].

Let D be an open subset in Cn and let p be a point in D. Let f 1, . . . , f n

be n germs of holomorphic functions in p such that p is an isolated zero of
the holomorphic mapping f = ( f 1, . . . , f n) around p. Let c be a positive
real number. If u is a psh function in a neighbourhood of p, we will say
that u has a logarithmic pole at p of growth log || f || and weight c if

u(z) − c log || f(z)|| ≤ Ø(1) as z → p.

In particular, if f(z) = z − p, we just say that u has a logarithmic pole at p
of weight c ([Kli91]).

Let p1, . . . , pk be k distinct points in D. For each point p j , let f 1
j , . . . , f n

j
be n germs of holomorphic functions in pj such that pj is an isolated zero of
the holomorphic mapping f j = ( f 1

j , . . . , f n
j ) around pj , and let c1, . . . , ck

be k positive weights. Denote by P the finite set {(pj , f j, c j), 1 ≤ j ≤ k}.
As for the classical pluricomplex Green function, we define an extremal
function gD(P, .) by (1.8) and we call it the pluricomplex Green function
on D with poles in P.

Lemma 4.1. Let p be a point in Cn and f be a germ of holomorphic map
such that p is an isolated zero of f in V , an open neighbourhood of p. If
u(z) = log || f(z)|| in V , then (ddcu)n = (2π)nmult( f, p)δp on V , where
mult( f, p) is the algebraic or geometric multiplicity of f at p.

Proof. Let us denote by m = mult( f, p). 1 ≤ m < +∞. If m = 1, then
p is a classical logarithmic pole of weight 1 for u, and there exist two
constants c1 and c2 such that c1 + log ||z − p|| ≤ u(z) ≤ log ||z − p|| + c2.

If m > 1, there exists a sequence (vν)ν of regular values for f converging
to O. Denote by f ν the holomorphic mapping defined on V by f ν = f −vν,
and let ( f ν)−1(O) = {wν

1, . . . , wν
m}. For ν sufficiently large, all the points

wν
1, . . . , wν

m are distinct and regular for f ν and they converge to p when ν
tends to infinity.

(ddc log || f ν||)n = 0 on V \ ( f ν)−1(O) and when we take the limit, we
obtain that (ddc log || f ||)n = 0 on V \ {p}.
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(ddc log || f ν||)n(z) = (2π)n
∑m

l=1 δwν
l
(z) on V . For any r > 0 suf-

ficiently small, there exists ν0 ≥ 1 such that for any ν ≥ ν0 we have∫
B(p,r)(ddc log || f ν||)n(z) = (2π)nm, and thus

∫
B(p,r)(ddc log || f ||)n(z) =

(2π)nm. Consequently, (ddc log || f ||)n(p) = (2π)nm. ��
In the next proposition, we list some basic properties of the extremal

function gD(P, .).

Proposition 4.2. [LR99] Let D, D′ be two open sets in Cn and let P be
a finite set {(pj , f j, c j), 1 ≤ j ≤ k}, of poles p j in D associated respectively
with the germs of the holomorphic mappings f j and the weights c j . Then
the following statements hold:

(i) If z ∈ D and D ⊂ D′, then gD(P, z) ≥ gD′(P, z).
(ii) If z ∈ D, D ⊂ D′ and D′ \ D is pluripolar, then gD(P, z) = gD′(P, z).
(iii) Suppose that D is bounded. Then there exists a constant C ∈ IR such

that for any j = 1, . . . , k,

gD(P, z) ≥ c j log || f j(z)|| + C near p j . (4.18)

If r j > 0 and {z ∈ Vj : || f j(z)|| < r j} � Vj ⊂ D for j = 1, . . . , k (Vj
is a neighbourhood of p j where the mapping f j is defined, bounded
by 1 and has p j as unique zero), then

gD(P, z) ≤ c j log(|| f j(z)||/r j) on {z ∈ Vj : || f j(z)|| < r j}. (4.19)

(iv) If D is bounded, then z �→ gD(P, z) is a negative psh function with k
logarithmic poles p j of growth log || f j || and of weight c j , respectively
for j = 1, . . . , k.

(v) If D is a bounded hyperconvex domain, then for any w ∈ ∂D,
limz→w

z∈D
gD(P, z) = 0.

(vi) If D is bounded, then z �→ gD(P, z) is maximal in D \ {p1, . . . , pk},
i.e.

(ddcgD(P, .))n ≡ 0 in D \ {p1, . . . , pk}.
Proposition 4.3. Let D and D′ be two bounded domains in Cn and F :
D → D′ be a holomorphic mapping.

(i) Let P be the finite set {(pj , f j , c j), 1 ≤ j ≤ k} of poles p j in D
associated respectively with the germs of the holomorphic mappings f j and
the weights c j . Let P′ be the finite set {(F(pj), gj , c j), 1 ≤ j ≤ k} of poles
F(pj ) in D′ associated respectively with the germs of the holomorphic maps
g j and the weights c j . We suppose that g j ◦ F = f j and that g j = gj ′ if
F(pj ) = F(pj ′), then

gD′(P′, F(z)) ≤ gD(P, z), z ∈ D.

(ii) Let F be a proper holomorphic mapping and p′ be a point in D′ such
that F−1({p′}) is the finite set of points in D {pj : 1 ≤ j ≤ k}. Let P be
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the finite set {(pj, F − p′), 1 ≤ j ≤ k} of poles p j in D associated with the
germs of the holomorphic mapping F − p′ and weights equal to 1. Then

gD(P, z) = gD′(p′, F(z)) on D.

Proof. gD′(P′, F(.)) is a negative psh function on D such that gD′ (P′,F(z))−
c j log || f j(z)|| ≤ Ø(1), as z → pj , for j = 1, . . . , k. Then gD′(P′, F(.)) ≤
gD(P, .) on D and the first item is proved.

Let us proved now the second item. Set u = gD(P, .) and define v(w) =
sup{u(z) : z ∈ F−1(w)}, on D′. It is well known that the function v is
psh and negative on D′ (see [Kli91]). By construction, u ≤ v ◦ F on D.
Furthermore, v has a logarithmic pole in p′. Indeed, when w tends to p′,
z ∈ F−1(w) tends to some point in {p1 , . . . , pk}, u(z) ≤ log ||F(z)−p′||+C
around pj , 1 ≤ j ≤ k (where C is a constant) and v(w) ≤ log ||w− p′||+C.
Consequently, we have the first inequality gD(P, .) ≤ gD′(p′, F(.)) on D.
For the converse, apply item (i). ��

Now Theorem 4 gives us alternative description of the pluricomplex
Green function gD(P, .) in terms of the Monge-Ampère operator.

Let D be a bounded hyperconvex domain in Cn and let P be a finite
set {(pj , f j, c j), 1 ≤ j ≤ k}, of poles pj in D associated respectively with
the germs of the holomorphic mappings f j and the positive weights c j .
Fix r > 0 sufficiently small such that f j is defined in a neighbourhood
of B(pj, r) and such that pj is the unique zero of f j in B(pj, r), for
j = 1, . . . , k. The multiplicity of f j at pj is equal to the number of
preimages in B(pj, r) of any regular value for f j sufficiently near O. Denote
m j = mult( f j, pj ); m j ≥ 1. If m j > 1, there exists a sequence (vν

j)ν of
regular values for f j such that lim

ν→∞ vν
j = O. Then for any ν sufficiently

large, f −1
j (vν

j) = {wν
1, j, . . . , wν

m j , j} ⊂ B(pj , r) \ {pj}, where the points
wν

1, j , . . . , wν
m j , j are distinct. The multiplicity at each point wν

l, j of the germ
f j − vν

j is equal to 1.
In the case where m j = 1, we denote vν

j = O and wν
1, j = pj for any ν.

Then we can introduce Pν the finite set {(wν
1,1, f1−vν

1, c1), . . . , (wν
m1,1

, f1−
vν

1, c1), . . . , (wν
1,k, fk −vν

k, ck), . . . , (wν
mk,k

, fk −vν
k, ck)} of poles wν

l, j in D
associated respectively with the germs of the holomorphic mappings f ν

j :=
f j − vν

j and the weights c j , for 1 ≤ j ≤ k and 1 ≤ l ≤ m j .

Theorem 4.4. If D is a bounded hyperconvex domain in Cn, then gD(Pν, .)

converges uniformly on any compact set of D \ {p1, . . . , pk} to the function
gD(P, .) when ν tends to ∞. In addition, for any ν,

∫
D(ddcgD(P, .))n =∫

D(ddcgD(Pν, .))
n.

Proof. We use the same notations as above. There exists r > 0 such that the
balls B(pj, r) are disjoint and there exist (see Proposition 4.2) two constants
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α1 and α2 such that for any j = 1, . . . , k

c j log || f j(z)|| + α1 ≤ gD(P, z) ≤ c j log || f j(z)|| + α2 on B(pj, r).

Let η > 0 be fixed. Then there exists a constant d1 such that for any ν

sufficiently large and for any j = 1, . . . , k, we have f −1
j (vν

j) = {wν
1, j, . . . ,

wν
m j , j} ⊂ B(pj, r) and

(1 + η)(c j log || f j(z)|| + α1) ≥ c j log || f ν
j (z)|| + d1 on ∂B(pj, r).

There exists a real number 0 < r1 � r such that for any ν sufficiently large
and for any j = 1, . . . , k, we have

(1 + η)(c j log || f j(z)|| + α2) ≤ c j log || f ν
j (z)|| + d1 on ∂B(pj, r1).

Let v denote the psh function on D defined by v(z) =


c j log || f ν
j (z)|| + d1 on B(pj, r1),

for each j ∈ {1, . . . , k},
max{c j log || f ν

j (z)|| + d1, (1 + η)gD(P, z)} on B(pj, r) \ B(pj, r1),

for each j ∈ {1, . . . , k},
(1 + η)gD(P, z) on D \ ∪ j B(pj, r).

Then v < 0 on D and by definition of gD(Pν, .), v ≤ gD(Pν, .) on D.
In addition, v ≥ (1 + η)gD(P, .) on D \ (∪ j B(pj , r1)); consequently
gD(Pν, .) ≥ (1 + η)gD(P, .) on D \ (∪ j B(pj, r1)).

Conversely, we can prove that for any η > 0, there exists a real number
0 < r2 � r such that for any ν sufficiently large, we have gD(P, .) ≥
(1 + η)gD(Pν, .) on D \ (∪ j B(pj, r2)).

We remark that r1 and r2 tend to 0 and ν tends to ∞ when η tends to 0.
The proof is complete. ��
Proof of Proposition 5. This is a direct consequence of Proposition 4.3.
Indeed, it is well known that the pluricomplex Green function gP0 (O, .) in P0
with a logarithmic pole in O and a weight equal to 1 is defined by gP0 (O, z) =
sup1≤l≤n log(|zl|/r0), on P0. Thus, since F : P̃(−ε+β(ε))→ P0 is a proper
holomorphic mapping and F−1(O) is the finite set of points Z, we deduce

that gP̃(−ε+β(ε))(P, .) = v, on P̃(−ε + β(ε)). ��

5. Proofs of Theorems A and B

5.1. The case where D is a strictly hyperconvex domain

5.1.1. K regular. Here we prove Theorem A when D is strictly hypercon-
vex. Let us denote by ũ the following psh function on D j :

ũ(z) = sup
1≤l≤n

1

p
log | fl(z)|.
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Since each holomorphic function fl ∈ O(D j)∩E p,2 j , we have: ũ ≤ u on D.
In addition, log(r0/r1) = p(1−2ε). Consequently, if v is defined as in (1.7),
we have (1 − 2ε)v = ũ + ε − β(ε) on D j and

v − ε − β(ε)

1 − 2ε
≤ u

1 − 2ε
on D. (5.20)

Let us denote by v1 the pluricomplex Green function on D, gD(P, .),
with the same logarithmic poles as v = gP̃(−ε+β(ε))(P, .).

Lemma 5.1.∫
D
(ddcv1)

n =
∫

P̃(−ε+β(ε))

(ddcv)n → C(K, D) when ε → 0.

Proof. By definition of gD(P, .), since the function v − ε−β(ε)

1−2ε
is negative

on D and has logarithmic poles in P, we have v1 ≥ v − ε−β(ε)

1−2ε
on D. Then,

(1 − 2ε)v1 ≥ −(ε − β(ε)), u ≤ −ε + ε2 on ∂ P̃(−ε + β(ε))

and
v1 = u = 0 on ∂D.

Since v1 is maximal on D \ P̃(−ε + β(ε)), we obtain that

v1 ≥ ε − β(ε)

1 − 2ε
.

u

ε − ε2
= cεu on D \ P̃(−ε + β(ε)),

where cε = 1 − β(ε)/ε

(1 − 2ε)(1 − ε)
. As β(ε) ≤ ε2/2, cε converges to 1 when ε

tends to 0. On the other hand, v1 ≤ v on P̃(−ε + β(ε)), because P̃(−ε +
β(ε)) ⊂ D. Thus v1 ≤ −1 on K and v1 ≤ u on D. We have two continuous
exhaustion functions v1 and u on D, such that cεu ≤ v1 ≤ u in a neighbour-
hood of ∂D. Now by applying the following Lemma 5.2, which is a special
case of a more general result proved by Demailly ([Dem85], [Dem87]), we
deduce that

C(K, D) =
∫

D
(ddcu)n ≤

∫
D
(ddcv1)

n ≤ cn
ε

∫
D
(ddcu)n = cn

ε C(K, D).

This completes the proof of Lemma 5.1. ��
Lemma 5.2. “Comparison Theorem” – Let D be a bounded hyperconvex
domain in Cn, let u and v ∈ PSH(D) ∩ C(D, [−∞, 0]) be two exhaustion
functions in D. Suppose that u < v in a neighbourhood of ∂D. Then

∫
D
(ddcv)n ≤

∫
D
(ddcu)n.
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We recall that Z ′ = {pj : 1 ≤ j ≤ k′} (where k′ ≤ k) is the finite
set of zeros of the holomorphic mapping F in P̃(−1 + ε + β(ε)) and
that F has no zero in ∂ P̃(−1 + ε + β(ε)). Let us consider the finite set
P′ = {(pj , F, 1

log(r0/r1)
), 1 ≤ j ≤ k′} in P̃(−1 + ε + β(ε)) of poles pj

associated respectively with the germs of the holomorphic map F and the
weights 1

log(r0/r1)
. Let denote v2, resp. v3, the pluricomplex Green function

gD(P′, .) on D, resp. gD(−1+ε+ε3/2)(P′, .) on D(−1 + ε + ε3/2).

Lemma 5.3. ∫
D
(ddcv2)

n → C(K, D) when ε → 0.

Proof. According to the previous inequality (5.20), we have

(1 − 2ε)v ≤ u + ε − β(ε) = −1 + 2ε + ε3/2 − β(ε) on ∂D(−1 + ε + ε3/2).

If we denote by dε the following positive constant: dε = ε3/2−β(ε)

1−2ε
, we obtain

in particular that v+1−dε ≤ 0 on D(−1+ε+ε3/2) ⊃ P̃(−1 + ε + β(ε)).
Consequently, by the definition of v3, v3 ≥ v+1−dε on D(−1+ε+ε3/2),

v3 ≥ −dε on ∂ P̃(−1 + ε + β(ε)) and v3 = 0 on ∂D(−1 + ε + ε3/2).

Also,

u + 1 − ε − ε3/2 ≤ ε2 − ε3/2 on ∂ P̃(−1 + ε + β(ε))

and u + 1 − ε − ε3/2 = 0 on ∂D(−1 + ε + ε3/2).

Since v3 is maximal on D(−1 + ε + ε3/2) \ P̃(−1 + ε + β(ε)), we obtain
that

v3 ≥ dε.
u + 1 − ε − ε3/2

−ε2 + ε3/2
on D(−1 + ε + ε3/2) \ P̃(−1 + ε + β(ε)).

We remark that dε

−ε2+ε3/2 tends to 1 when ε tends to 0. By applying Lemma 5.2,
we deduce that∫

D(−1+ε+ε3/2)

(ddcv3)
n ≤

(
dε

−ε2 + ε3/2

)n ∫
D(−1+ε+ε3/2)

(ddcu)n

=
(

dε

−ε2 + ε3/2

)n

C(K, D),

where the last equality arises from the fact that u is maximal on D \ K .
On the other hand, v3 ≤ gP̃(−1+ε+β(ε))(P′, .) = v+1 on P̃(−1+ε+β(ε)),

because P̃(−1 + ε + β(ε)) ⊂ D(−1 + ε + ε2) ⊂ D(−1 + ε + ε3/2). Thus
we have on ∂D(−1 + ε2) ⊂ D(−1 + ε) ⊂ P̃(−1 + ε + β(ε))

v3 ≤ u + ε − β(ε)

1 − 2ε
+ 1 = −ε + ε2 − β(ε)

1 − 2ε
= ε(−1 + ε − β(ε)/ε)

1 − 2ε
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and
u + 1 − ε − ε3/2 = ε2 − ε − ε3/2 = ε(−1 + ε − ε1/2).

Consequently, according to the maximality of u on D \ K , we deduce that

v3 ≤ (u + 1 − ε − ε3/2)(1 − ε + β(ε)/ε)

(1 − 2ε)(1 − ε + ε1/2)
on D(−1+ε+ε3/2)\D(−1+ε2).

Let us denote by eε the following positive constant: eε = (1−ε+β(ε)/ε)

(1−2ε)(1−ε+ε1/2)
.

We remark that this constant eε tends to 1 when ε tends to 0. By applying
again Lemma 5.2, we deduce that∫

D(−1+ε+ε3/2)

(ddcv3)
n ≥ en

ε C(K, D);

which completes the proof of Lemma 5.3, since
∫

D(ddcv2)
n =∫

D(−1+ε+ε3/2)
(ddcv3)

n. ��
Lemma 5.4. There exist aε > 0 and bε > 0 which converge to 0 when ε
tends to 0 such that

v2 ≥ (1 + aε)u on D \ D(−1 + bε).

Proof. Since P′ ⊂ P, v2 ≥ v1 on D. Then (1−2ε)v2 ≥ (1−2ε)v−(ε−β(ε))
on D, and in particular, (1 − 2ε)v2 ≥ −1 + ε +β(ε) on ∂ P̃(−1 + ε+β(ε)).

As v2 is maximal on D \ P̃(−1 + ε + β(ε)), we deduce that (1 − 2ε)v2 ≥
−1 + ε + β(ε) on D \ P̃(−1 + ε + β(ε)), and in particular on ∂D(−1 +
ε + ε2), where u = −1 + ε + ε2. Consequently, since v2 is maximal on
D \ D(−1 + ε + ε2), we deduce that

v2 ≥ 1 − ε − β(ε)

1 − 2ε
.

u

1 − ε − ε2
on D \ D(−1 + ε + ε2),

which completes the proof of the lemma. ��
Proposition 5.5. There exists a sequence (gm)m, of classical pluricomplex
Green functions on D which converges uniformly on any compact set of the
form D \ D(−1 + δ) (where δ > 0 is as small as we want) to u when m
tends to infinity.

Proof. According to Lemma 5.3, we know that
∫

D(ddcv2)
n =∫

P̃(−1+ε+β(ε))
(ddcv)n tends to C(K, D) when ε tends to 0.

In addition, according to Theorem 4.4, we know that there exists a se-
quence (g̃m)m of classical pluricomplex Green functions on D with lo-
garithmic poles in the open set P̃(−1 + ε + β(ε)) that converges uni-
formly on any compact set of D \ Z ′ (we recall that the poles of v2 are
in Z ′ ⊂ P̃(−1 + ε + β(ε)) ⊂ D(−1 + ε + ε2)) to the function v2. Also,
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∫
D(ddcv2)

n = ∫
D(ddcg̃m)n for any m. Thus, according to Lemma 5.4, there

exists a classical pluricomplex Green function g̃m on D (for m sufficiently
large) which satisfies g̃m(z) ≥ −1 − a′

ε, on D \ D(−1 + bε), where a′
ε > 0

converges to 0 when ε tends to 0.
Then, the lemma is a direct consequence of the following theorem, which

is a particular case of a more general result of [NP01]. ��
Theorem 5.6. Let D be a strictly hyperconvex domain in Cn containing
a regular compact set K. If we have a sequence of positive numbers (ε j) j
which converges to 0, and a sequence (gj) j of classical pluricomplex Green
functions on D such that:

(i) for each j, the poles of g j are contained in D(−1 + ε j),
(ii) for each j, g j(z) ≥ −1 on ∂D(−1 + ε j),
(iii)

∫
D(ddcg j)

n converges to C(K, D) when j tends to ∞,

then the sequence (gj) j converges uniformly on any compact set of the form
D \ D(−1 + δ) (where δ > 0 is as small as we want) to uK,D when j tends
to ∞.

We postpone the proof of this theorem to the end of this paper. According
to Proposition 5.5 and to the fact that u and gj are maximal on D\D(−1+δ)
for j sufficiently large, we deduce finally Theorem A. ��
5.1.2. K strictly regular. Now we prove Theorem B. K is a strictly regular
compact set in D, i.e. the closure of a relatively compact open subset ω in
D such that uK,D ≡ u∗

ω,D.
Let us denote by ω−δ = {z ∈ ω : dist(z, ∂ω) > δ} the open set in D,

defined for all sufficiently small positive constant δ, and by K−δ its closure.
Since K−δ is a union of closed balls and D is a bounded hyperconvex
domain in Cn, we deduce that uK−δ,D is continuous on D (see [Kli91]
Corollary 4.5.9). When δ > 0 decreases to 0, the family of compact sets
(K−δ)δ increases to ∪δK−δ = ω and the family of psh functions (uK−δ,D)δ

decreases and converges pointwise on D to the psh function u∗
ω,D. By

hypothesis, u := uK,D ≡ u∗
ω,D. Thus, according to Dini’s theorem, we

obtain that this family (uK−δ,D)δ converges uniformly on D to u.
The open subset ω−δ is relatively compact in ω. Thus, according to

a property of Narasimhan (see [Nar71], p. 116), we deduce that the holo-
morphically convex hull of K−δ in D is also included in the interior of the
holomorphically convex hull of K in D.

For any ε > 0, there exists δ0 > 0 such that for any 0 < δ ≤ δ0,
√

1 + ε.uK−δ,D ≤ u ≤ uK−δ,D on D.

Then, for δ = δ0 fixed, we apply Theorem A to the couple (K−δ, D), and
we obtain that: for any ε′ > 0 sufficiently small, there exists a function g
which is a classical pluricomplex Green function on D with a finite number
of logarithmic poles, such that
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(i) the poles of g are in the open neighbourhood D(−1 + ε′)δ = {z ∈ D :
uK−δ,D(z) < −1 + ε′} of (K−δ)

∧D,
(ii) g satisfies the following uniform estimates on D \ D(−1 + ε′)δ

√
1 + ε.g(z) ≤ uK−δ,D(z) ≤ (1 − ε)g(z).

The family (D(−1 + ε′)δ)ε′ is a basis of neighbourhoods of (K−δ)
∧D. Thus,

for ε′ > 0 sufficiently small, D(−1 + ε′)δ ⊂ (K̂D)◦, and the proof of
Theorem B is achieved. ��

5.2. The case where D is a bounded hyperconvex domain

Finally we prove Theorem A in the case of a bounded hyperconvex domain
D in Cn containing a compact set K .

In the case where K is regular in D, uK,D = u is a continuous exhaustion
function for D. For any δ > 0 sufficiently small, D(−δ) = {z ∈ D : u(z) <
−δ} is a strictly hyperconvex domain and K is a regular compact set in
D(−δ). We also have the following equality:

uK,D(−δ) = max

{
u + δ

1 − δ
,−1

}
on D(−δ).

Thus, for any ε > 0 and δ > 0 sufficiently small, there exists 0 < δ0 < δ
such that for any 0 < δ′ < δ0, we have

(1 + ε)1/3uK,D(−δ′) ≤ u ≤ uK,D(−δ′) on D(−δ).

We fix 0 < δ′ ≤ inf{δ0, δ
2}. If we apply Theorem A to the couple

(K, D(−δ′)) (uK,D(−δ′) < −1 + δ′ exactly where u < −1 + δ′(1 − δ′)),
we obtain that there exists a pluricomplex Green function g on D(−δ′)
which satisfies

(i) the poles of g are in the open neighbourhood D(−1 + δ′(1 − δ′)) of
(K )∧D,

(ii) g satisfies the following uniform estimates on D(−δ′) \ D(−1 +
δ′(1 − δ′)):

(1 + ε)1/3g ≤ uK,D(−δ′) ≤ (1 − ε)1/3g.

If we combine these last two inequalities, we obtain that

(1 + ε)2/3g ≤ u ≤ (1 − ε)2/3g on D(−δ′) \ D(−1 + δ′(1 − δ′)).

The problem now is to replace this function g by a pluricomplex Green
function on D. Let us introduce G, the pluricomplex Green function on D
with the same logarithmic poles as g but with weights all multiplied by
the same positive constant δ−δ′

δ
. We remark that since δ′ has been chosen

≤ δ2, this constant δ−δ′
δ

tends to 1, when δ tends to 0. Since D(−δ′) ⊂ D,
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G ≤ δ−δ′
δ

g on D(−δ′). Let us introduce the following function v on D
by

v(z) =




δ−δ′
δ

g(z) − δ′
(1−ε)2/3 on D(−δ)

max
{

δ−δ′
δ

g(z) − δ′
(1−ε)2/3 ,

u(z)
(1−ε)2/3

}
on D(−δ′) \ D(−δ)

u(z)
(1−ε)2/3 on D \ D(−δ′)

In addition,

u(z) = −δ and − δ ≤ (δ − δ′)(1 − ε)2/3

δ
g(z) − δ′ on ∂D(−δ)

and

u(z) = −δ′ and
(δ − δ′)(1 − ε)2/3

δ
g(z) − δ′ = −δ′ on ∂D(−δ′).

Consequently, v is negative, psh on D and continuous on D. According
to the definition of G on D, we deduce that v ≤ G on D, and in par-
ticular on D(−δ), we have G ≥ δ−δ′

δ
g(z) − δ′

(1−ε)2/3 . Thus, we have on

D(−δ) \ D(−1 + δ′(1 − δ′)):

δ(1 + ε)2/3

δ − δ′ G(z) ≤ u(z) ≤ δ(1 − ε)2/3

δ − δ′

(
G(z) + δ′

(1 − ε)2/3

)
.

Since u and G are maximal on D \ D(−δ), we have the same inequalities
on D \ D(−δ).

As δ′(1 − δ′) ≤ δ, if we choose δ′ sufficiently small such that δ
δ−δ′ ≤

(1 + ε)1/3 and δδ′
δ−δ′ + δ(1−ε)2/3

δ−δ′ G ≤ (1 − ε)G on D \ D(−1 + δ), we can
conclude. ��

In the case where K is not necessarily regular in D, for any δ > 0
sufficiently small, let K δ denote the compact subset of D defined by K δ =
{z ∈ D : dist(z, K̂D) ≤ δ}.
Proof of Proposition 6. Let us denote by S the following negligible set
{z ∈ D : u(z) < u∗(z)} of D. By definition u = uK,D = u∗

K,D on D \ S
and u is lower semicontinuous on D. In addition, u∗ is upper semicontinuous
on D. Then u is continuous on D \ S. It is well known ([BT76]) that S is
pluripolar and in particular, for any β > 0, there exists an open subset ω
in D containing S such that C(ω, D) < β and u is a continuous function on
the compact set D̄ \ ω.

For any γ > 0 sufficiently small, Kγ is regular in D ([Kli91], Corol-
lary 4.5.9) and the family (uKγ ,D)γ increases to u when γ decreases to 0. In
particular, this family (uKγ ,D)γ converges uniformly to u on D̄ \ ω.

Then by applying Theorem A to the couple (Kγ , D), we complete the
proof of this proposition. ��
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Proof of Theorem 5.6

Theorem 5.6 is a particular case of a more general result due to Poletsky
and myself [NP01]. Here we give a detailed proof of Theorem 5.6.

Fix δ > 0 as small as we want, and let us denote by Lδ the compact
set D \ D(−1 + δ). Our goal is to prove that the sequence (gj) j converges
uniformly to u on Lδ.

Let u j denote the psh function on D, continuous on D, defined by
u j = max{gj,−1}. According to hypothesis (i) and (ii) and to the fact
that (ε j) j converges to 0, it is equivalent to prove that the sequence (u j) j
converges uniformly to u on Lδ.

According to hypothesis (i), u j is maximal on D\ D(−1 + ε j) for any j.
In addition, u j is equal to 0 on ∂D. Thus, by the definition of the relative
extremal function uD(−1+ε j),D = max( u

1−ε j
,−1) and by hypothesis (ii), we

deduce that u j ≥ uD(−1+ε j),D ≥ u/(1 − ε j) on D. Integrating by parts
provides us with the inequalities:

∫
D
(−u)(ddcu)n ≥ (1 − ε j)

∫
D
(−u j)(ddcu)n

= (1 − ε j)

∫
D
(−u)ddcu j ∧ (ddcu)n−1

≥ (1 − ε j)
2
∫

D
(−u j)ddcu j ∧ (ddcu)n−1

= . . . ≥ (1 − ε j)
n+1

∫
D
(−u j)(ddcu j)

n.

Thus

0 ≤
∫

D

(
u j − u

1 − ε j

)
(ddcu)n ≤ (1 − ε j)

n
∫

D
u j(ddcu j)

n

−
∫

D

u

1 − ε j
(ddcu)n.

In addition,
∫

D u j(ddcu j)
n = − ∫

D(ddcg j)
n converges to − ∫

D(ddcu)n =∫
D u(ddcu)n , according to hypothesis (iii). Therefore for every a > 0, we

have

lim
j→∞

∫
{

u j− u
1−ε j

>a
}(ddcu)n = 0.

Let us now fix 1 > δ > 0 and ε > 0 such that ε|z|2 − δ < −δ/2 on D
and denote v j = u j + ε|z|2 − δ. Note that (ddc(ε|z|2 − δ))n = εncndV,
where the constant cn depends only on n and dV is the volume form. Let
E j = {z ∈ D : u

1−ε j
< v j}. We remark that E j is relatively compact in D. In
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addition, u j − u
1−ε j

= v j + δ−ε|z|2 − u
1−ε j

> δ−ε|z|2 > δ/2 on E j . By the
subadditivity of the complex Monge-Ampère operator and the Comparison
Principle [BT82], we have
∫

E j

(ddcu j)
n+

∫
E j

(ddc(ε|z|2−δ))n ≤
∫

E j

(ddcv j)
n ≤ 1

(1 − ε j)n

∫
E j

(ddcu)n.

(1 − ε j)
nεncnm(E j) ≤ ∫

{u j− u
1−ε j

>δ/2}(ddcu)n. Thus lim
j→∞ m(E j) = 0.

We remark that u j − u
1−ε j

≤ δ on D \ D(−δ/2) for j sufficiently large.

Since u is continuous on D, there is 0 < r < dist(D(−δ), ∂D) such that
|u(z) − u(w)| < δ when z ∈ D(−δ), w ∈ D and |z − w| < r.

Clearly the set G j = {z ∈ D : u
1−ε j

< u j − δ} ⊂ E j . If m(G j) <

δm(B(O, r)) for all j ≥ j0, then for z0 ∈ D(−δ) and B = B(z0, r), so we
have

u j(z0) ≤ 1

m(B)

∫
B

u j(z)dV(z)

= 1

m(B)

(∫
B\G j

u j(z)dV(z) +
∫

B∩G j

u j(z)dV(z)

)

≤ 1

m(B)

∫
B\G j

(
u(z)

1 − ε j
+ δ

)
dV(z)

= 1

m(B)

∫
B

(
u(z)

1 − ε j
+ δ

)
dV(z)

− 1

m(B)

∫
B∩G j

(
u(z)

1 − ε j
+ δ

)
dV(z).

Since, u ≥ −1 on D, we have u j(z0) ≤ u(z0)+δ

1−ε j
+δ+δ( 1

1−ε j
−δ) ≤ u(z0)+4δ

for j ≥ j1. Thus u + 4δ ≥ u j ≥ u
1−ε j

≥ u − ε j

1−ε j
≥ u − δ on D(−δ), when

j ≥ j2, and the proof is complete. ��
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