<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-9">
<style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
</head>
<body dir="ltr">
<div id="divtagdefaultwrapper" dir="ltr" style="font-size:12pt; color:rgb(0,0,0); font-family:Calibri,Helvetica,sans-serif,EmojiFont,"Apple Color Emoji","Segoe UI Emoji",NotoColorEmoji,"Segoe UI Symbol","Android Emoji",EmojiSymbols">
<p></p>
<div style="font-family:Calibri,Helvetica,sans-serif,EmojiFont,"Apple Color Emoji","Segoe UI Emoji",NotoColorEmoji,"Segoe UI Symbol","Android Emoji",EmojiSymbols; font-size:16px; margin-top:0px; margin-bottom:0px">
<font face="Calibri,Helvetica,sans-serif,serif,EmojiFont" size="2"><span style="font-size:16px"></span></font></div>
<p style="font-family: Calibri, Helvetica, sans-serif, serif, EmojiFont; font-size: 16px;">
Akdeniz Üniversitesi, Fen Fakültesi, Matematik Bölümü Genel Seminerleri</p>
<p style="font-family: Calibri, Helvetica, sans-serif, serif, EmojiFont; font-size: 16px;">
<br>
</p>
<p style="font-family: Calibri, Helvetica, sans-serif, serif, EmojiFont; font-size: 16px;">
Konuşmacı: <b>Şafak Özden</b></p>
<p style="font-family: Calibri, Helvetica, sans-serif, serif, EmojiFont; font-size: 16px;">
<br>
</p>
<p style="font-family: Calibri, Helvetica, sans-serif, serif, EmojiFont; font-size: 16px;">
Başlık: </p>
<p style="font-family: Calibri, Helvetica, sans-serif, serif, EmojiFont; font-size: 16px;">
<b></b></p>
<b style="font-family: Calibri, Helvetica, sans-serif, serif, EmojiFont; font-size: 16px;">Introduction to Physics-Informed Neural Networks</b>
<p style="font-family: Calibri, Helvetica, sans-serif, serif, EmojiFont; font-size: 16px;">
<b></b></p>
<p style="font-family: Calibri, Helvetica, sans-serif, serif, EmojiFont; font-size: 16px;">
<b><br>
</b></p>
<p style="font-family: Calibri, Helvetica, sans-serif, serif, EmojiFont; font-size: 16px;">
Tarih/ Saat: 10 Nisan (Perşembe) 2025, 15:30</p>
<p style="font-family: Calibri, Helvetica, sans-serif, serif, EmojiFont; font-size: 16px;">
Yer : <span style="font-size: 12pt;">Akdeniz Üniversitesi, Fen Fakültesi B-Blok, </span></p>
<p style="font-family: Calibri, Helvetica, sans-serif, serif, EmojiFont; font-size: 16px;">
<span style="font-size: 12pt;"> Matematik Bölümü Seminer Salonu</span></p>
<div style="font-family:Calibri,Helvetica,sans-serif,EmojiFont,"Apple Color Emoji","Segoe UI Emoji",NotoColorEmoji,"Segoe UI Symbol","Android Emoji",EmojiSymbols; font-size:16px; margin-top:0px; margin-bottom:0px">
<font face="Calibri,Helvetica,sans-serif,serif,EmojiFont" size="2"><span style="font-size:16px"><font face="Calibri,Helvetica,sans-serif,serif,EmojiFont" size="2"><span style="font-size:16px"><b></b></span></font></span></font></div>
<div style="font-family:Calibri,Helvetica,sans-serif,EmojiFont,"Apple Color Emoji","Segoe UI Emoji",NotoColorEmoji,"Segoe UI Symbol","Android Emoji",EmojiSymbols; font-size:16px; margin-top:0px; margin-bottom:0px">
<font face="Calibri,Helvetica,sans-serif,serif,EmojiFont" size="2"><span style="font-size:16px"><font face="Calibri,Helvetica,sans-serif,serif,EmojiFont" size="2"><span style="font-size:16px"><b><br>
</b></span></font></span></font></div>
<div style="font-family:Calibri,Helvetica,sans-serif,EmojiFont,"Apple Color Emoji","Segoe UI Emoji",NotoColorEmoji,"Segoe UI Symbol","Android Emoji",EmojiSymbols; font-size:16px; margin-top:0px; margin-bottom:0px">
<font face="Calibri,Helvetica,sans-serif,serif,EmojiFont" size="2"><span style="font-size:16px"><font face="Calibri,Helvetica,sans-serif,serif,EmojiFont" size="2"><span style="font-size:16px"><b>Abstract:</b></span></font></span></font></div>
<div style="font-family:Calibri,Helvetica,sans-serif,EmojiFont,"Apple Color Emoji","Segoe UI Emoji",NotoColorEmoji,"Segoe UI Symbol","Android Emoji",EmojiSymbols; font-size:16px; margin-top:0px; margin-bottom:0px">
<font face="Calibri,Helvetica,sans-serif,serif,EmojiFont" size="2"><span style="font-size:16px">Deep learning has become a powerful tool for approximating complex functions, with significant implications for mathematics and physics. In this talk, we examine
neural networks from the perspective of function approximation, discussing their theoretical foundations and practical applications. We begin by framing deep learning as a method for learning mappings between input and output spaces, highlighting the roles
of activation functions and gradient-based optimization in the training process.<br>
<br>
We then discuss universal approximation theorems, which establish the theoretical expressive power of neural networks, and address common challenges such as vanishing gradients. To overcome these challenges, we explore architectural innovations like residual
networks (ResNets) and their application to solving ordinary differential equations (ODEs).<br>
<br>
Next, we connect mathematical convolution kernels to convolutional neural networks (CNNs), demonstrating their utility in processing structured data. Turning to partial differential equations (PDEs), we review modern approaches, including physics-informed neural
networks (PINNs) and collocation methods, which enable PDE solutions without traditional discretization techniques.<br>
<br>
To illustrate these concepts, we present a case study: solving the 2D Poisson equation using PINNs. This example highlights the effectiveness of neural networks in computational physics and demonstrates their potential for addressing scientific problems.<br>
<br>
This talk aims to provide mathematicians and physicists with an understanding of the theoretical principles underlying deep learning while showcasing its practical applications in solving differential equations.</span></font></div>
<div><font face="Calibri,Helvetica,sans-serif,serif,EmojiFont" size="2"><span style="font-size:16px"><br>
</span></font></div>
<br>
<p></p>
</div>
</body>
</html>