<!DOCTYPE html>
<html>
  <head>
    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p> </p>
    <div class="moz-text-html" lang="x-unicode">
      <div dir="ltr">
        <div class="gmail-moz-text-html" lang="x-unicode">
          <div dir="ltr"><br>
            <div lang="x-unicode">
              <div align="center"><big><b><big>Welcome to the 2025
                      Spring talks of ODTU-Bilkent Algebraic Geometry
                      Seminars</big></b></big><b><br>
                </b></div>
              <div align="center"><i>since 2000</i><br>
              </div>
              <div align="center"><b><b>=================================================================</b></b><br>
                <br>
                This week the <a
                  href="http://www.bilkent.edu.tr/~sertoz/agseminar.htm"
                  target="_blank" moz-do-not-send="true">ODTU-Bilkent
                  Algebraic Geometry Seminar</a>  is <b>online</b><br>
                <br>
                <i><font color="#ff00ff">This talk will begin at <u><b>15:40</b></u><u> (GMT+3)</u></font></i><br>
                <a
href="https://www.timeanddate.com/worldclock/fixedtime.html?msg=ODT%C3%9C-Bilkent+Algebraic+Geometry+Seminar&iso=20250425T1540&p1=19&ah=1"
                  target="_blank" moz-do-not-send="true">Please check
                  your time difference between Ankara and your city here</a><br>
                <b>=================================================================<br>
                  <br>
                </b></div>
              <div align="center">
                <div align="center"><img
                    src="cid:part1.0NuMvmsJ.JAGyfXPe@bilkent.edu.tr"
                    alt="" width="724" height="404" class=""></div>
              </div>
              <div align="center"><br>
              </div>
              <div align="center"><i>Vincent van Gogh (1853-1890)<br>
                  On the morning of 29 July 1890 Tuesday he was working
                  on this painting. Later that day, in a field near
                  Auvers, Vincent shot himself in the chest with a
                  revolver. He died two days later, with his brother
                  Theo at his bedside. <br>
                  This painting is now on exhibition in the Van Gogh
                  Museum in Amsterdam.</i></div>
              <div align="center"><i><br>
                </i></div>
              <div align="center"><i><br>
                </i>
                <div align="left"><b><b><font color="#ff0000">Speaker: 
                        <font color="#000000"><a
                            href="https://avesis.metu.edu.tr/hsuluyer"
                            moz-do-not-send="true">Hasan Suluyer</a></font></font></b><b><font
                        color="#ff0000"><font color="#000000"> <br>
                        </font></font></b></b><b><b><font
                        color="#ff0000">Affiliation: </font><i>ODTÜ</i></b></b></div>
                <div align="left"><b><b><i><br>
                      </i></b></b></div>
                <div align="left"><b><b><font color="#ff0000"> Title: <font
                          color="#000000">Pencils of Conic-Line Curves<br>
                        </font></font></b><b><font color="#ff0000"><font
                          color="#000000"><br>
                        </font></font></b></b></div>
              </div>
              <div align="left"><b><b><font color="#ff0000">Abstract:  </font></b></b>A
                pencil is a line in the projective space of complex
                homogeneous polynomials of some degree d > 2. The
                number m of curves whose irreducible components are only
                lines in some pencils of degree d curves plays an
                important role for the existence of special line
                arrangements, which are called (m,d)-nets. It was proved
                that the number m, independent of d, cannot exceed 4 for
                an (m,d)-net. When the degree of each irreducible
                component of a curve is at most 2, this curve is called
                a conic-line curve and it is a union of lines or
                irreducible conics in the complex projective plane. Our
                main goal is to find an upper bound on the number m of
                such curves in pencils in CP^2 with the number of
                concurrent lines in these pencils.<br>
                <br>
                In this talk, we study the restrictions on the number m
                of conic-line curves in special pencils. The most
                general result we obtain is the relation between upper
                bounds on m and the number of concurrent lines in these
                pencils. We construct a one-parameter family of pencils
                such that each pencil in the family contains exactly 4
                conic-line curves.<b><b><font color="#ff0000"><br>
                      <br>
                    </font></b></b></div>
              <div align="left"><br>
              </div>
              <div align="left"><font color="#ff0000"><font
                    color="#000000"><b><font color="#ff0000">Date:<font
                          color="#000000"> 25 April 2025</font></font></b>,
                    <b>Friday</b></font></font><br>
              </div>
              <div align="left"><font color="#ff0000"><font
                    color="#000000"><b><font color="#ff0000">Time: </font>15:40 <i>(GMT+3)</i></b><br>
                    <b><font color="#ff0000">Place: </font></b><font
                      color="#ff0000"><font color="#000000"><b>Zoom</b></font></font></font></font></div>
              <blockquote>
                <p><font color="#ff0000"><font color="#000000"><font
                        color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">One
                              day before the seminar, an announcement
                              with the Zoom meeting link will be sent to
                              those who registered with Sertöz.<br>
                            </b></b></font></font></font></font></p>
                <p><font color="#ff0000"><font color="#000000"><font
                        color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">If
                              you have registered before for one of the
                              previous talks, there is no need to
                              register again; you will automatically
                              receive a link for this talk too.<br>
                            </b></b></font></font></font></font></p>
                <p><font color="#ff0000"><font color="#000000"><font
                        color="#ff0000"><font color="#000000"><b><b
style="color:rgb(51,51,51);font-family:arial,verdana,sans-serif;font-size:14px">If
                              you have not registered before, please
                              contact him at <a
href="mailto:sertoz@bilkent.edu.tr?subject=Zoom%20Seminar%20Address%20Request"
                                target="_blank" moz-do-not-send="true">sertoz@bilkent.edu.tr</a>.</b></b></font></font></font></font></p>
              </blockquote>
              <div align="left"><br>
              </div>
              <div align="left">You are most cordially invited to
                attend.</div>
              <div align="left"><br>
              </div>
              <div align="left">Ali Sinan Sertöz</div>
              <div align="left"><br>
              </div>
              <div align="center">
                <div align="center"><b><font color="#0080c0"><i><b><font
                            color="#0080c0"><i>This seminar series is
                              organized by a joint team from ODTÜ and
                              Bilkent<br>
                              <br>
                              Alexander Degtyarev (Bilkent)<br>
                              Ali Sinan Sertöz (Bilkent) contact person<br>
                              Ali Ulaş Özgür Kişisel (ODTÜ)<br>
                              Yıldıray Ozan (ODTÜ)<br>
                            </i></font></b></i></font></b></div>
              </div>
              <br>
              <hr>
              <pre cols="72">---------------------------------------------------------------------------- 
Ali Sinan Sertöz
Bilkent University, Department of Mathematics, 06800 Ankara, Türkiye
Office: (90)-(312) - 290 1490
Department: (90)-(312) - 266 4377
Fax: (90)-(312) - 290 1797
e-mail: <a href="mailto:sertoz@bilkent.edu.tr" target="_blank"
              class="gmail-moz-txt-link-freetext moz-txt-link-freetext"
              moz-do-not-send="true">sertoz@bilkent.edu.tr</a> 
Web: <a href="http://sertoz.bilkent.edu.tr" target="_blank"
              moz-do-not-send="true">sertoz.bilkent.edu.tr</a> 
----------------------------------------------------------------------------</pre>
            </div>
          </div>
        </div>
      </div>
    </div>
  </body>
</html>