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ABSTRACT

This talk introduces results for characteristically close vector fields [4] that are stable or non-stable
in the polar complex plane C, extending results in [3, 5]. All characteristic vectors (aka eigenvectors)
emanate from the same fixed point in C, namely, 0⃗. Stable vector fields satisfy an extension of the
Krantz stability condition [1], namely, the maximal eigenvalue of a stable system lies within or on the
boundary of the unit circle in C. In its earliest incarnation by Poincaré, the focus was on the stability
of the solar system [6]. Typically, vector fields are used to construct dynamical systems [7, §4]. The
focus here is on dynamical systems generated by stable characteristic vector fields (cVfs) in C. In
general, a characteristic of an object X is a mapping φ : X → C with values φ(x ∈ X) ∈ C that
provide a system profile. Characteristically near stable systems X,Y satisfy the extreme closeness
condition from [4], namely, |φ(x ∈ X)− φ(y ∈ Y )| ∈ [0, 0.5] .
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