<!DOCTYPE html>
<html>
  <head>
    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p> </p>
    <div class="moz-text-html" lang="x-unicode">
      <div dir="ltr">
        <div class="gmail-moz-text-html" lang="x-unicode">
          <div dir="ltr"><br>
            <div lang="x-unicode">
              <div align="center"><big><b><big>Welcome to the 2025 Fall
                      talks of ODTÜ-Bilkent Algebraic Geometry Seminars</big></b></big><b><br>
                </b></div>
              <div align="center"><i>since 2000</i><br>
              </div>
              <div align="center"><b><b>=================================================================</b></b><br>
                <br>
                This week the <a
                  href="http://www.bilkent.edu.tr/~sertoz/agseminar.htm"
                  target="_blank" moz-do-not-send="true">ODTÜ-Bilkent
                  Algebraic Geometry Seminar</a>  is <b>online</b><br>
                <br>
                <i><font color="#ff00ff">This talk will begin at <u><b>15:40</b></u><u> (GMT+3)</u></font></i><br>
                <a
href="https://www.timeanddate.com/worldclock/fixedtime.html?msg=ODT%C3%9C-Bilkent+Algebraic+Geometry+Seminar&iso=20251024T1540&p1=19&ah=1"
                  target="_blank" moz-do-not-send="true">Please check
                  your time difference between Ankara and your city here</a><br>
                <b>=================================================================<br>
                  <br>
                </b></div>
              <div align="center">
                <div align="center"><img
                    src="cid:part1.yZYTyaOT.Lg8guACR@bilkent.edu.tr"
                    alt="" width="549" height="462" class=""></div>
              </div>
              <div align="center"><br>
              </div>
              <div align="center"><i>Jean-Leon Gerome (1824-1904)<br>
                </i></div>
              <div align="center"><i><br>
                </i></div>
              <div align="center"><i><br>
                </i>
                <div align="left">
                  <div align="left"><b><b><font color="#ff0000">Speaker:
                        </font><a moz-do-not-send="true"
                          href="https://sites.google.com/view/tocj/home">Türkü
                          Özlüm Çelik</a></b></b></div>
                  <b><b><font color="#ff0000"><font color="#000000"> </font></font></b></b><b><b><font
                        color="#ff0000">Affiliation:<i> </i></font></b></b><i><b>Max
                      Planck</b></i></div>
                <div align="left"><b><b><i><br>
                      </i></b></b></div>
                <div align="left"><b><b><font color="#ff0000"> Title: <font
                          color="#000000">Interaction Networks via
                          Grassmannians<br>
                        </font></font></b><b><font color="#ff0000"><font
                          color="#000000"><br>
                        </font></font></b></b></div>
              </div>
              <div align="justify"><b><b><font color="#ff0000">Abstract: 
                    </font></b></b>When can a network of mutually
                reinforcing N components remain stable? To approach such
                questions, we describe the interactions through
                generalized Lotka–Volterra equations—a broad class of
                dynamical systems modeling how components influence one
                another over time. This formulation leads to a family of
                semi-algebraic sets determined by the sign pattern of
                the parameters. These sets encode positivity conditions
                defining regions of potential coexistence, with
                polynomial degrees growing exponentially in N. Embedding
                the parameter space into the real Grassmannian Gr(N,2N)
                transforms these conditions into sign relations governed
                by the Grassmann–Plücker equations and oriented
                matroids. This geometric reformulation yields a
                realization problem through which we detect impossible
                interaction networks and study the algebraic structure
                underlying stability. If time permits, we will also
                touch on how these structures connect to algebraic
                curves. This talk is based on our recent work <a
                  moz-do-not-send="true"
                  href="https://arxiv.org/abs/2509.00165">arXiv:2509.00165</a>.<b><b><font
                      color="#ff0000"> </font></b></b></div>
              <div align="left"><br>
              </div>
              <div align="left"><font color="#ff0000"><font
                    color="#000000"><b><font color="#ff0000">Date:<font
                          color="#000000"> 24 October 2025, Friday</font></font></b></font></font></div>
              <div align="left"><font color="#ff0000"><font
                    color="#000000"><b><font color="#ff0000">Time: </font>15:40 <i>(GMT+3)</i></b><br>
                    <b><font color="#ff0000">Place: </font></b><font
                      color="#ff0000"><font color="#000000"><b>Zoom</b></font></font></font></font></div>
              <blockquote>
                <p><i><b>Participants who have registered will receive
                      the Zoom link via email one day before the
                      seminar.</b></i></p>
                <p><i><b>If you registered for a previous talk in this
                      series, there's no need to register again—you'll
                      automatically receive the link for this session.</b></i></p>
                <p><i><b moz-do-not-send="true"
                      href="mailto:sertoz@bilkent.edu.tr">If you haven't
                      registered yet, please contact <a
                        href="mailto:sertoz@bilkent.edu.tr"
                        class="moz-txt-link-freetext"
                        moz-do-not-send="true">sertoz@bilkent.edu.tr</a>
                      to be added to the mailing list.</b></i></p>
              </blockquote>
              <div align="left">You are most cordially invited to
                attend.</div>
              <div align="left"><br>
              </div>
              <div align="left">Ali Sinan Sertöz</div>
              <div align="left"><br>
              </div>
              <div align="center">
                <div align="center"><b><font color="#0080c0"><i><b><font
                            color="#0080c0"><i>This seminar series is
                              organized by a joint team from ODTÜ and
                              Bilkent<br>
                              <br>
                              Alexander Degtyarev (Bilkent)<br>
                              Ali Sinan Sertöz (Bilkent) contact person<br>
                              Ali Ulaş Özgür Kişisel (ODTÜ)<br>
                              Yıldıray Ozan (ODTÜ)<br>
                            </i></font></b></i></font></b></div>
                <div align="left"><br>
                </div>
              </div>
              <hr>
              <pre cols="72">---------------------------------------------------------------------------- 
Ali Sinan Sertöz
Bilkent University, Department of Mathematics, 06800 Ankara, Türkiye
Office: (90)-(312) - 290 1490
Department: (90)-(312) - 266 4377
e-mail: <a href="mailto:sertoz@bilkent.edu.tr" target="_blank"
              class="gmail-moz-txt-link-freetext moz-txt-link-freetext"
              moz-do-not-send="true">sertoz@bilkent.edu.tr</a> 
Web: <a href="http://sertoz.bilkent.edu.tr" target="_blank"
              moz-do-not-send="true">sertoz.bilkent.edu.tr</a> 
----------------------------------------------------------------------------</pre>
            </div>
          </div>
        </div>
      </div>
    </div>
  </body>
</html>