<!DOCTYPE html>
<html>
  <head>
    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <div class="moz-text-html" lang="x-unicode">
      <div class="moz-text-html" lang="x-unicode">
        <div dir="ltr">
          <div class="gmail-moz-text-html" lang="x-unicode">
            <div dir="ltr"><br>
              <br>
              <div lang="x-unicode">
                <div align="center"><big><b><big>Welcome to the 2025
                        Fall talks of ODTÜ-Bilkent Algebraic Geometry
                        Seminars</big></b></big><b><br>
                  </b></div>
                <div align="center"><i>since 2000</i><br>
                </div>
                <div align="center"><b><b>=================================================================</b></b><br>
                  <br>
                  This week the <a
href="http://www.bilkent.edu.tr/~sertoz/agseminar.htm" target="_blank">ODTÜ-Bilkent
                    Algebraic Geometry Seminar</a>  is <b>online</b><br>
                  <br>
                  <i><font color="#ff00ff">This talk will begin at <u><b>15:40</b></u><u> (GMT+3)</u></font></i><br>
                  <a
href="https://www.timeanddate.com/worldclock/fixedtime.html?msg=ODT%C3%9C-Bilkent+Algebraic+Geometry+Seminar&iso=20251107T1540&p1=19&ah=1"
                    target="_blank">Please check your time difference
                    between Ankara and your city here</a><br>
                  <b>=================================================================<br>
                    <br>
                  </b></div>
                <div align="center">
                  <div align="center"><img
                      src="cid:part1.JFg7egGT.taGEzswR@bilkent.edu.tr"
                      alt="" width="685" height="458"></div>
                </div>
                <div align="center"><br>
                </div>
                <div align="center"><i>Jean-Leon Gerome (1824-1904)<br>
                  </i></div>
                <div align="center"><i><br>
                  </i></div>
                <div align="center"><i><br>
                  </i>
                  <div align="left">
                    <div align="left"><b><b><font color="#ff0000">Speaker:
                          </font> <a
href="https://akademik.baskent.edu.tr/karakas">Halil İbrahim Karakaş</a></b></b></div>
                    <b><b><font color="#ff0000"><font color="#000000"> </font></font></b></b><b><b><font
                          color="#ff0000">Affiliation: </font><i>Başkent <br>
                          <br>
                        </i></b></b></div>
                  <div align="left"><b><b><font color="#ff0000"> Title:
                        </font></b><b><font color="#ff0000"><font
                            color="#000000">On the enumeration of Arf
                            numerical semigroups with given multiplicity
                            and conductor<br>
                            <br>
                          </font></font></b></b></div>
                </div>
                <div align="justify"><b><b><font color="#ff0000">Abstract: </font></b></b>The
                  number of numerical semigroups with given Frobenious
                  number (or conductor, or genus) is one of the topics
                  that is studied by many researchers. In our previous
                  works, we have given parametrizations of Arf numerical
                  semigroups of small multiplicity and obtained formulas
                  for the number of Arf numerical semigroups with
                  multiplicity less than 14 and arbitrary conductor. I
                  presented part of these results in ODTÜ-Bikent AG
                  seminars 6 years ago. We noticed that the number of
                  Arf numerical semigroups with multiplicity m  and
                  conductor c  is (eventually) constant for some m
                  (especially for prime m) when restricted to some
                  congruence classes of c modulo m. In a recent work
                  with N. Tutaş, we have characterized those
                  multiplicities m and congruence classes of c modulo m
                  for which the above property holds. This talk will be
                  based on [<a
href="https://link.springer.com/article/10.1007/s00233-025-10503-8">Karakaş
                    H İ and Tutaş N, (2025), On the enumeration of Arf
                    numerical semigroups with given multiplicity and
                    conductor, Semigroup Forum 110, 308-316.</a>] where
                  the above characterization is given.</div>
                <div align="justify"><br>
                </div>
                <div align="left"><font color="#ff0000"><font
                      color="#000000"><b><font color="#ff0000">Date:<font
                            color="#000000"> 7 November 2025, Friday</font></font></b></font></font></div>
                <div align="left"><font color="#ff0000"><font
                      color="#000000"><b><font color="#ff0000">Time: </font>15:40 <i>(GMT+3)</i></b><br>
                      <b><font color="#ff0000">Place: </font></b><font
                        color="#ff0000"><font color="#000000"><b>Zoom</b></font></font></font></font></div>
                <blockquote>
                  <p><i><b>Participants who have registered will receive
                        the Zoom link via email one day before the
                        seminar.</b></i></p>
                  <p><i><b>If you registered for a previous talk in this
                        series, there's no need to register again—you'll
                        automatically receive the link for this session.</b></i></p>
                  <p><i><b href="mailto:sertoz@bilkent.edu.tr">If you
                        haven't registered yet, please contact <a
                          href="mailto:sertoz@bilkent.edu.tr"
                          class="moz-txt-link-freetext">sertoz@bilkent.edu.tr</a>
                        to be added to the mailing list.</b></i></p>
                </blockquote>
                <div align="left">You are most cordially invited to
                  attend.</div>
                <div align="left"><br>
                </div>
                <div align="left">Ali Sinan Sertöz</div>
                <div align="left"><br>
                </div>
                <div align="center">
                  <div align="center"><b><font color="#0080c0"><i><b><font
                              color="#0080c0"><i>This seminar series is
                                organized by a joint team from ODTÜ and
                                Bilkent<br>
                                <br>
                                Alexander Degtyarev (Bilkent)<br>
                                Ali Sinan Sertöz (Bilkent) contact
                                person<br>
                                Ali Ulaş Özgür Kişisel (ODTÜ)<br>
                                Yıldıray Ozan (ODTÜ)<br>
                              </i></font></b></i></font></b></div>
                  <br>
                </div>
                <br>
                <hr>
                <pre cols="72">---------------------------------------------------------------------------- 
Ali Sinan Sertöz
Bilkent University, Department of Mathematics, 06800 Ankara, Türkiye
Office: (90)-(312) - 290 1490
Department: (90)-(312) - 266 4377
e-mail: <a href="mailto:sertoz@bilkent.edu.tr" target="_blank"
class="gmail-moz-txt-link-freetext moz-txt-link-freetext">sertoz@bilkent.edu.tr</a> 
Web: <a href="http://sertoz.bilkent.edu.tr" target="_blank">sertoz.bilkent.edu.tr</a> 
----------------------------------------------------------------------------</pre>
              </div>
            </div>
          </div>
        </div>
      </div>
    </div>
  </body>
</html>