<!DOCTYPE html>
<html>
  <head>
    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p> </p>
    <div class="moz-text-html" lang="x-unicode">
      <div dir="ltr">
        <div class="gmail-moz-text-html" lang="x-unicode">
          <div dir="ltr"><br>
            <div lang="x-unicode">
              <div align="center"><big><b><big>Welcome to the 2026
                      Spring talks of ODTÜ-Bilkent Algebraic Geometry
                      Seminars</big></b></big><b><br>
                </b></div>
              <div align="center"><i>since 2000</i><br>
              </div>
              <div align="center"><b><b>=================================================================</b></b><br>
                <br>
                This week the <a
                  href="http://www.bilkent.edu.tr/~sertoz/agseminar.htm"
                  target="_blank" moz-do-not-send="true">ODTÜ-Bilkent
                  Algebraic Geometry Seminar</a>  is <b>online</b><br>
                <br>
                <i><font color="#ff00ff">This talk will begin at <u><b>15:40</b></u><u> (GMT+3)</u></font></i><br>
                <a
href="https://www.timeanddate.com/worldclock/fixedtime.html?msg=ODT%C3%9C-Bilkent+Algebraic+Geometry+Seminar&iso=20260220T1540&p1=19&ah=1"
                  target="_blank" moz-do-not-send="true">Please check
                  your time difference between Ankara and your city here</a><br>
                <b>=================================================================<br>
                  <br>
                </b></div>
              <div align="center">
                <div align="center"><img
                    src="cid:part1.OMe9sQsM.8dORB7rC@bilkent.edu.tr"
                    alt="" width="587" height="414" class=""></div>
              </div>
              <div align="center"><br>
              </div>
              <div align="center"><i>Ben Viegers (1886-1947)<br>
                </i></div>
              <div align="center"><i><br>
                </i></div>
              <div align="center"><i><br>
                </i>
                <div align="left">
                  <div align="left"><b><b moz-do-not-send="true"
href="https://fens.sabanciuniv.edu/tr/faculty-members/detail/3419"><font
                          color="#ff0000">Speaker: </font> <a
                          moz-do-not-send="true"
                          href="https://math.gsu.edu.tr/personel.html">Öznur
                          Turhan</a></b></b></div>
                  <b><b><font color="#ff0000"><font color="#000000"> </font></font></b></b><b><b><font
                        color="#ff0000">Affiliation: </font><i>Galatasaray
                        & Polish Academy<br>
                        <br>
                      </i></b></b></div>
                <div align="left"><b><b><font color="#ff0000"> Title:<font
                          color="#000000">  Newton-nondegenerate line
                          singularities, Lê numbers and Bekka
                          (c)-regularity<br>
                           </font></font></b></b></div>
              </div>
              <div align="justify"><b><b><font color="#ff0000">Abstract:</font></b></b> 
                Consider an analytic function f(t,z) defined in a
                neighbourhood of the origin of C x Cn such that for all
                t, the function ft(z):=f(t,z) defines a hypersurface of
                Cn with a line singularity at 0∈Cn . Denote by V(f) the
                hypersurface of C x Cn defined by f(t,z) and write Σf
                for its singular locus. We assume that ft is
                ''quasi-convenient'' and Newton nondegenerate. Within
                this framework, we show that if the Lê numbers of ft are
                independent of t for all small t, then Σf is smooth and
                V(f)\Σf is Bekka (c)-regular over Σf. This is a version
                for line singularities of a result of Abderrahmane
                concerning isolated singularities.<br>
                <br>
                As a corollary, we obtain that any family of
                quasi-convenient, Newton non-degenerate, line
                singularities with constant Lê numbers as above is
                topologically equisingular. In particular, this applies
                to families with non-constant Newton diagrams, and
                therefore extends, in some direction, a result
                previously observed by Damon.<br>
                <br>
                This is a joint work with Christophe Eyral.</div>
              <div align="justify"><br>
              </div>
              <div align="left"><font color="#ff0000"><font
                    color="#000000"><b><font color="#ff0000">Date:<font
                          color="#000000"> 20 February 2026, Friday</font></font></b></font></font></div>
              <div align="left"><font color="#ff0000"><font
                    color="#000000"><b><font color="#ff0000">Time: </font>15:40 <i>(GMT+3)</i></b><br>
                    <b><font color="#ff0000">Place: </font></b><font
                      color="#ff0000"><font color="#000000"><b>Zoom</b></font></font></font></font></div>
              <blockquote>
                <p><i><b>Participants who have registered will receive
                      the Zoom link via email one day before the
                      seminar.</b></i></p>
                <p><i><b>If you registered for a previous talk in this
                      series, there's no need to register again—you'll
                      automatically receive the link for this session.</b></i></p>
                <p><i><b moz-do-not-send="true"
                      href="mailto:sertoz@bilkent.edu.tr">If you haven't
                      registered yet, please contact <a
                        href="mailto:sertoz@bilkent.edu.tr"
                        class="moz-txt-link-freetext"
                        moz-do-not-send="true">sertoz@bilkent.edu.tr</a>
                      to be added to the mailing list.</b></i></p>
              </blockquote>
              <div align="left">You are most cordially invited to
                attend.</div>
              <div align="left"><br>
              </div>
              <div align="left">Ali Sinan Sertöz</div>
              <div align="left"><br>
              </div>
              <div align="center">
                <div align="center"><b><font color="#0080c0"><i><b><font
                            color="#0080c0"><i>This seminar series is
                              organized by a joint team from ODTÜ and
                              Bilkent<br>
                              <br>
                              Alexander Degtyarev (Bilkent)<br>
                              Ali Sinan Sertöz (Bilkent) contact person<br>
                              Ali Ulaş Özgür Kişisel (ODTÜ)<br>
                              Yıldıray Ozan (ODTÜ)<br>
                            </i></font></b></i></font></b></div>
                <div align="left"><br>
                </div>
              </div>
              <div align="left"><font size="1"><i>(PS: <a
href="mailto:sertoz@gmail.com?cc=sertoz%40bilkent.edu.tr&subject=Unsubscribe&body=Please%20remove%20this%20address%20from%20the%20announcement%20list%20of%20ODT%C3%9C-Bilkent%20Algebraic%20Geometry%20Seminars."
                      moz-do-not-send="true">To unsubscribe from this
                      list please click here and send the custom mail
                      without changing anything</a>.)</i></font> </div>
              <hr>
              <pre cols="72">---------------------------------------------------------------------------- 
Ali Sinan Sertöz
Bilkent University, Department of Mathematics, 06800 Ankara, Türkiye
Office: (90)-(312) - 290 1490
Department: (90)-(312) - 266 4377
e-mail: <a href="mailto:sertoz@bilkent.edu.tr" target="_blank"
              class="gmail-moz-txt-link-freetext moz-txt-link-freetext"
              moz-do-not-send="true">sertoz@bilkent.edu.tr</a> 
Web: <a href="http://sertoz.bilkent.edu.tr" target="_blank"
              moz-do-not-send="true">sertoz.bilkent.edu.tr</a> 
----------------------------------------------------------------------------</pre>
            </div>
          </div>
        </div>
      </div>
    </div>
  </body>
</html>