[Turkmath:9569] GYTE Weekly Seminars
İrem YAMAN
i.yaman at gyte.edu.tr
28 Şub 2014 Cum 11:23:39 EET
Sayın liste üyeleri,
GYTE Matematik haftalık seminerler kapsamında, Henning Stichtenoth (Sabancı Üniversitesi)
5 Mart'ta "Rational Points on Curves over Finite Fields" başlıklı bir seminer verecektir.
Seminerin detayları ekte (ve aşağıda) olup tüm ilgilenenler davetlidir.
Saygılarımızla,
İrem Yaman & Aslı Güçlükan İlhan
---------------------------------------------------------------------------------------------------------------------------------------
Dear All,
Henning Stichtenoth (Sabancı University) will give a talk titled "Rational Points on Curves over Finite Fields" in our next departmental weekly seminar:
Abstract:
Denote by $\mathbb{F}_q$ the finite field with $q$ elements, and by $K$ its algebraic
closure. By a {\em plane curve over} $\mathbb{F}_q$ (more precisely: an {\em irreducible affine
plane curve over} $\mathbb{F}_q$) we mean the set
$${\cal C}=\{P=(a,b)\, |\, a,b\in K \, \text{and} \, f(a,b)=0\},$$
where $f(x,y)\in \mathbb{F}_q[x,y]$ is a given irreducible polynomial with coefficients in
$\mathbb{F}_q$. We are interested in the set of $\mathbb{F}_q$-{\em rational points} of ${\cal C}$,
$${\cal C }(\mathbb{F}_q)=\{(a,b)\in {\cal C} \, |\, a,b\in \mathbb{F}_q\}$$
and in particular its cardinality
$$N({\cal C})=\#{\cal C}(\mathbb{F}_q).$$
An important numerical invariant of a curve is its {\em genus}. The famous {\em Hasse-Weil theorem}
gives upper and lower bounds for $N({\cal C})$ in terms of the genus.
In this talk I will introduce these notions and discuss some recent results
about $N({\cal C})$ for curves over $\mathbb{F}_q$ of large genus (here we will also consider
non-plane curves). Such results have interesting applications, not only in
Number Theory but also in Coding Theory, Cryptography and Theoretical
Computer Science.
Date: 05.03.2014
Time: 14:00
Location: GIT, Department of Mathematics, Building I, Seminar Room
All are most cordially invited.
Best regards,
İrem Yaman&Aslı Güçlükan İlhan
-------------- sonraki bölüm --------------
Bir HTML eklentisi temizlendi...
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20140228/d0a9c688/attachment-0001.html>
-------------- sonraki bölüm --------------
A non-text attachment was scrubbed...
Name: stichtenoth .pdf
Type: application/pdf
Size: 478935 bytes
Desc: stichtenoth .pdf
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20140228/d0a9c688/attachment-0001.pdf>
Turkmath mesaj listesiyle ilgili
daha fazla bilgi