[Turkmath:3367] MSGSÜ-Matematik Genel Seminer- Yasemin Kara-15.11.2018, 16:00
Sibel Şahin
sahinsibel85 at gmail.com
Mon Nov 12 07:16:26 UTC 2018
Sayın liste üyeleri,
*15 Kasım Perşembe 16:00'**da* MSGSÜ Matematik Bölümü Genel Semineri'nde
Boğaziçi Üniversitesi Matematik Bölümü'nden *Yasemin Kara* *"**Monomial
Mappings and Hilbert Modular Surfaces**" *başlıklı bir konuşma verecektir.
Konuşmanın özeti aşağıda yer almaktadır.
Seminerde görüşmek dileğiyle,
Sibel ŞAHİN
*Başlık:* *Monomial Mappings and Hilbert Modular Surfaces*
*Özet : *Let A be a matrix in SL_2(Z) with | Tr A| > 2. Denote by λ^[±] the
two eigenvalues, with |λ^+| > 1 and |λ^−| < 1. It is convenient to suppose
further that λ^[±] > 0. The monomial map M_A : (C^* )^2 → (C^*)^2 is
defined by M_A ( x y ) = (x^a y^b x^c y^d ) . The map MA : (C^* )^2 → (C^*
)^2 is an isomorphism, but of course is not an isomorphism from P^2 → P^2 :
the three points [0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0] are points of
indeterminacy for either M_A or M_A^−1 . We will make an infinite number of
blow-ups in P^2 to make a compact space X_A in which (C^* )^2 is dense, and
such that M_A extends to an “isomorphism” M_A : X_A → X_A. Our interest in
monomial mappings largely springs from trying to understand the resolution
of singularities at the cusps of Hilbert modular surfaces SK = (H × H)/P
SL_2(O_K) where K is a real quadratic field and O_K is its ring of
integers.
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://yunus.listweb.bilkent.edu.tr/pipermail/turkmath/attachments/20181112/9869d350/attachment.html>
More information about the Turkmath
mailing list