[Turkmath:4781] Fwd: BilTop - Zoom Link (Mar 8)

Ergun Yalcin yalcine at fen.bilkent.edu.tr
Mon Mar 8 08:32:16 UTC 2021


Bugün Bilkent’te güzel bir online seminer olacak. İlgilenen herkesi bekleriz.

Ergün



Begin forwarded message:

> From: Cihan Okay <cihan.okay at bilkent.edu.tr>
> Date: 8 March 2021 10:58:12 GMT+3
> To: Math Faculty <mathfac at fen.bilkent.edu.tr>, Mathgrad at fen.bilkent.edu.tr,  begum.yilmaz at bilkent.edu.tr, su.koc at ug.bilkent.edu.tr,  turker.anil at metu.edu.tr, yusuf.ozer at ug.bilkent.edu.tr,  a.habboush at bilkent.edu.tr, ahsen.ayhan at ug.bilkent.edu.tr, akiferdal at gmail.com,  alejandromagyar at gmail.com, alexander.samokhin at gmail.com,  asli.ilhan at deu.edu.tr, bahra004 at umn.edu, berkanuze at gmail.com,  berrin at fen.bilkent.edu.tr, bilge.koksal at ug.bilkent.edu.tr,  "Daniel R. Grayson" <dan at math.uiuc.edu>, davidhui at connect.ust.hk, dilan at ee.bilkent.edu.tr,  dmkubrak at gmail.com, emre.tunc at ug.bilkent.edu.tr,  Enrique Torres <enrique.torresgiese at twu.ca>, erkam at ee.bilkent.edu.tr, galdobr at gmail.com,  gb7g14 at soton.ac.uk, gorkem.guney at ug.bilkent.edu.tr, haoqing.wu at epfl.ch,  hekking at kth.se, imamali.azizov at ug.bilkent.edu.tr,  irmak.kaysudu at bilkent.edu.tr, karabatmanferhat at gmail.com, lange at math.lmu.de,  limanjiashe at 163.com, mahnoor.sulaiman at bilkent.edu.tr, mgelvin at gmail.com,  mmahmoudi at sharif.ir, mpamuk at metu.edu.tr, mugekanuni at duzce.edu.tr,  oussama at ug.bilkent.edu.tr, oyku.carus at bilkent.edu.tr, pasemra at metu.edu.tr,  popelens at gmail.com, rchihara at ms.u-tokyo.ac.jp, rognes at math.uio.no,  ronak.naeemaee at bilkent.edu.tr, Samuel.Bronstein at ens.fr,  selin.akyurek at bilkent.edu.tr, sera.zenginler at bilkent.edu.tr,  serim at bilkent.edu.tr, simal.sevinc at ug.bilkent.edu.tr,  umar.rauf at bilkent.edu.tr, yucehan.yazici at bilkent.edu.tr,  yurdakul.ogulcan at gmail.com, yzheng at gradcenter.cuny.edu,  Alex Degtyarev <degt at fen.bilkent.edu.tr>, ali peker <h.alipeker at gmail.com>,  Alihan <alihan.serim at ug.bilkent.edu.tr>, Andrew Baker <Andrew.J.Baker at glasgow.ac.uk>, Baran Zadeoğlu <baranzadeoglu at gmail.com>,  Beril <beril.daloglu at bilkent.edu.tr>, Betül Tolgay <tolgaybetul at gmail.com>,  Cem <cem.gulumser at ug.bilkent.edu.tr>, Claude Schochet <clsmath at gmail.com>,  Dilan <dilan at metu.edu.tr>, Ergun Yalcin <yalcine at fen.bilkent.edu.tr>,  Esat Akin <esat.akin at ug.bilkent.edu.tr>, Esma Dirican <esmadirican131 at gmail.com>,  Fatma Altunbulak <altunbulak at gmail.com>, Gunes <gunes.tepe at bilkent.edu.tr>,  İpek Tuvay <ipektuvay at gmail.com>,  Kubra <kubra.calisir at bilkent.edu.tr>, Kutay <kutay.tire at ug.bilkent.edu.tr>,  Laurence Barker <barker at fen.bilkent.edu.tr>,  Mehmet Kirtisoglu <mehmet.kirtisoglu at ug.bilkent.edu.tr>,  Melih Ucer <melih.ucer at bilkent.edu.tr>, Mufit Sezer <sezer at fen.bilkent.edu.tr>,  Oguz Savk <oguz.savk at boun.edu.tr>, Oscar <o.randal-williams at dpmms.cam.ac.uk>,  Oussama Amir <oussama.amir at ug.bilkent.edu.tr>, Ozgun Unlu <unluo at fen.bilkent.edu.tr>,  Pinka Dey <pinkadey11 at gmail.com>, Serdar Baysal <serdar.baysal at bilkent.edu.tr>,  Servin Bagheralmoosavi <servin at bilkent.edu.tr>, Zilan Akbas <zilan.akbas at bilkent.edu.tr>
> Cc: Calista Bernard <calista at stanford.edu>
> Subject: BilTop - Zoom Link (Mar 8)
> 
> Join Zoom Meeting
> https://zoom.us/j/93776900203
> 
> Meeting ID: 937 7690 0203
> Passcode: 753061
> 
> -------
> Time: Mar 8, 2021 @ 13:30 UTC+3
> Speaker: Calista Bernard
> Affiliation: Stanford University 
>  
> Title: Twisted homology operations 
> 
> Abstract: In the 70s, Fred Cohen and Peter May gave a description of the mod $p$ homology of a free $E_n$-algebra in terms of certain homology operations, known as Dyer--Lashof operations, and the Browder bracket. These operations capture the failure of the $E_n$ multiplication to be strictly commutative, and they prove useful for computations. After reviewing the main ideas from May and Cohen's work, I will discuss a framework to generalize these operations to homology with certain twisted coefficient systems and give a complete classification of twisted operations for $E_{\infty}$-algebras. I will also explain computational results that show the existence of new operations for $E_2$-algebras. 
> --------
> 
> To see the upcoming talks visit: https://researchseminars.org/seminar/BilTop
>  
> 
> Best,
> Cihan Okay
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://yunus.listweb.bilkent.edu.tr/pipermail/turkmath/attachments/20210308/55da405d/attachment.html>


More information about the Turkmath mailing list