[Turkmath:6305] Re: Seckin Seminerler- Bugun 18:00 - Ingrid Daubechies

Baris Coskunuzer coskunuz at gmail.com
Wed Dec 6 13:38:19 UTC 2023


Hatirlatma. Bugun 18:00'de tum matematikseverleri konusmamiza bekliyoruz.

https://nyu.zoom.us/j/96571913368?pwd=YStxRjJ3U3JxdmN5Qko0N3JHeDdFZz09

On Mon, Dec 4, 2023 at 2:13 AM Baris Coskunuzer <coskunuz at gmail.com> wrote:

> Sayın Liste Üyeleri,
>
> Aralık ayının seçkin semineri 6 Aralık 2023 Çarşamba günü saat 18.00'de. Uygulamalı Matematiğin liderlerinden Ingrid Daubechies, çok ilginç bir konuşmayla karşımızda.
>
> Zoom link: https://nyu.zoom.us/j/96571913368?pwd=YStxRjJ3U3JxdmN5Qko0N3JHeDdFZz09
>
> Konuşmacı: Ingrid Daubechies (Duke University)
>
> Başlık: Old-fashioned Machine Learning: Using Diffusion Methods to Learn Underlying Structure
>
> Özet: Many datasets consist of complex items that can be reasonably surmised to lie on a manifold of much lower dimension than the number of
> parameters or coordinates with which the individual items are acquired.
>
> Manifold diffusion is an established method, used successfully to parametrize such datasets much more succinctly. The talk describes an  enhancement of this method: when each individual item is itself a complex object, as is the case in many applications, one can model the
> collection as a fiber bundle, and build a fiber bundle diffusion operator from which one can gradually learn properties of the underlying
> base manifold. This will be illustrated with applications to morphological evolutionary studies in biology.
>
> Poster: https://tmd.org.tr/wp-content/uploads/2023/09/ColloquiumARALIK-2023poster_page-0001-1.jpg
> https://tmd.org.tr/tms-distinguished-colloquium-series/
>
> https://en.wikipedia.org/wiki/Ingrid_Daubechies
>
> Tüm matematikseverleri bekliyoruz. Konuşmayı bölümlerinizde paylaşabilirseniz seviniriz.
>
> Saygılarımızla
>
> TMD Seçkin Seminerler Komitesi
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://yunus.listweb.bilkent.edu.tr/pipermail/turkmath/attachments/20231206/e4f912e5/attachment.html>


More information about the Turkmath mailing list