[Turkmath:5947] DEÜ Matematik Seminerleri - Prof. Jonathan Mark Selig (London South Bank University, UK)
Celal Cem Sarioglu
celalcem at gmail.com
Tue Jan 17 18:49:39 UTC 2023
London South Bank University (UK) öğretim üyesi Prof. Jonathan Mark Selig,
22.01.2023 - 04.02.2023 tarihleri arasında TÜBİTAK 2221 Konuk veya
Akademik İzinli Bilim İnsanı Destekleme Programı kapsamında Dokuz Eylül
Üniversitesi Matematik Bölümünü ziyaret edecektir. Ziyaret kapsamında 24 ve
26 Ocak 2023 tarihlerinde aşağıda detayları verilen seminerleri verecektir.
İlgilenen herkes seminerlere davetlidir.
Dr. Celal Cem Sarıoğlu
(DEÜ Matematik Bölümü adına)
Prof. Jonathan Mark Selig'in Google Scholar sayfası:
https://scholar.google.co.uk/citations?user=kV_ISs8AAAAJ&hl=en
-----------------------------------------------------------------------------------
Tarih: 24 Ocak 2023 Salı, Saat: 14:00
Yer: DEÜ Matematik Bölümü Seminer Salonu (B206)
Konuşmacı: Prof. Jonathan Mark Selig (London South Bank University, UK)
Başlık: Quaternions, Dual Quaternions and Clifford algebras
ÖZET:
After a brief review of Hamilton’s quaternions and how they can be used to
represent rotations, Clifford’s dual quaternions will be discussed. The use
of this algebra to represent rigid-body displacements will be explained. As
will the relation to the Study quadric. The representation of twists,
infinitesimal rigid-body displacements, will also be considered. Finally,
the notion of Clifford algebras will be introduced and various examples
will be considered. In particular, examples representing the algebra of
3-dimensional Euclidean geometry will be outlined.
-----------------------------------------------------------------------------------
-----------------------------------------------------------------------------------
Tarih: 26 Ocak 2023 Perşembe, Saat: 14:00
Yer: DEÜ Matematik Bölümü Seminer Salonu (B206)
Konuşmacı: Prof. Jonathan Mark Selig (London South Bank University, UK)
Başlık: Some Geometry for Robot Kinematics
ÖZET:
The talk will begin with a brief review of dual quaternions and the
realisation of the group of rigid-body displacements by the Study quadric.
Next we look at some linear subspaces of the Study quadric and their
interpretation as sets of displacements. Following this we will describe
some sets of displacements that are intersections of the Study quadric with
linear subspaces of the surrounding P 7 . Then we will discuss some Segre
varieties. These can be realised by simple serial linkages. A final
extended example shows how some of these ideas can be used to solve
problems in the theory of mechanisms.
-----------------------------------------------------------------------------------
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://yunus.listweb.bilkent.edu.tr/pipermail/turkmath/attachments/20230117/1874b944/attachment-0001.html>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: Q1.pdf
Type: application/pdf
Size: 58801 bytes
Desc: not available
URL: <http://yunus.listweb.bilkent.edu.tr/pipermail/turkmath/attachments/20230117/1874b944/attachment-0002.pdf>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: Geometry2.pdf
Type: application/pdf
Size: 67375 bytes
Desc: not available
URL: <http://yunus.listweb.bilkent.edu.tr/pipermail/turkmath/attachments/20230117/1874b944/attachment-0003.pdf>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: JMSpht.jpg
Type: image/jpeg
Size: 2693692 bytes
Desc: not available
URL: <http://yunus.listweb.bilkent.edu.tr/pipermail/turkmath/attachments/20230117/1874b944/attachment-0001.jpg>
More information about the Turkmath
mailing list