[Turkmath:5534] Fwd: Bilkent Topology Seminar - Talk (Apr 4 - 13:30 UTC+3|face-to-face @Math Seminar Room)

yalcine at fen.bilkent.edu.tr yalcine at fen.bilkent.edu.tr
Fri Apr 1 13:01:59 UTC 2022


Bilkent Topoloji Semineri önümüzdeki hafta Pazartesi günü
13:30’da Matematik Bölümü Seminer odasında yüz yüze olacak.
Konuşmacımız Fransa’dan, PARIS 13’den emekli matematikçi 
Bob Oliver. Konuşma başlığı ve özeti aşağıda. Bob Oliver 
Bilkent’te on gün misafirimiz olacak. İlgilenen herkesi konuşmasına 
ve sonrasında kampüste kendisiyle sohbet etmeye bekleriz.

Herkese iyi hafta sonları dilerim.
Ergün



> 
> Dear all,
> 
> This week's seminar will be face-to-face in the Mathematics Seminar Room. 
> 
> -------
> 
> Speaker: Bob Oliver (Université PARIS 13)
> 
> Title: A Krull-Remak-Schmidt theorem for fusion systems
> 
> 
> Abstract: The Krull-Remak-Schmidt theorem, when restricted to finite groups, implies 
> that every finite group factorizes as a product of indecomposable subgroups 
> which are unique up to isomorphism. But the theorem actually says much 
> more. For example, as a special case, it implies that this factorization is 
> unique (not only up to isomorphism) whenever the group is perfect or 
> has trivial center. This is important, for example, when describing the 
> automorphisms of the group in terms of the automorphisms of its 
> indecomposable factors.
> 
> A similar factorization theorem is true for fusion systems over finite 
> $p$-groups (in fact, for fusion systems over discrete $p$-toral groups). In 
> this talk, I plan to begin by discussing the original theorem for groups 
> and sketching its proof, and then, after a brief introduction to fusion 
> systems, describe how these ideas can be carried over 
> to prove the corresponding result in that setting.
> 
> 
> --------
> 
> To see the upcoming talks visit: https://researchseminars.org/seminar/BilTop <https://researchseminars.org/seminar/BilTop>
>  
> 
> Best,
> Cihan Okay
> 
> http://cihan.okay.bilkent.edu.tr/ <http://cihan.okay.bilkent.edu.tr/>

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://yunus.listweb.bilkent.edu.tr/pipermail/turkmath/attachments/20220401/0d8ee859/attachment.html>


More information about the Turkmath mailing list